EAGER: Layered Semiconductor Membranes for Tunable Separation and Filtering of Ions and Biomolecules
EAGER:用于离子和生物分子可调分离和过滤的层状半导体膜
基本信息
- 批准号:1119446
- 负责人:
- 金额:$ 12.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed EAGER research is to show the feasibility of using layered nanoporous semiconductor membranes for tunable ion and protein separation and filtering. This objective will be achieved through the use of complex computational models which have been previously utilized by the PI to describe electrostatic behavior of nanoporous semiconductor membranes, including layered membranes under bias, as tunable electronic devices for ion and biomolecular manipulations. This work is built on the widely known electrical tunability of semiconductor materials and the charge inversion phenomenon in the nanoporous semiconductor membranes under electrical bias, which was recently demonstrated by the PI. The novelty of the proposed membranes is in utilization of opposite doping in the layering of the n- and p-doped semiconductor materials to form a p-n junction membrane for versatile electric control over electrostatic potential landscape in the nanopores transversing the membrane. The intellectual merit of this program is developing self-consistent model of a nanoporous membrane composed of semiconductor materials and immersed in an electrolyte solution with electric bias applied to the semiconductor layers and the electrolyte solution, resulting in motion of ions in the solution through the nanopore. This model will be used to understand and control the membrane behavior with applications in ion separation and filtering. The advantage of using semiconductor materials for the membrane resides in the electrical tunability of these materials as well as ease of integration of such membrane in lab-on-a-chip and nanofluidic devices. Thus, the theoretical understanding of the effect of the ionic charge inversion in a nanopore in various semiconductor membranes and its influence on ionic transport through the nanopores could find broad applications in nanotechnology and bioengineering and will contribute to understanding analogous processes in biological and bio-mimetic systems. The primary goal of this focused program is to show the feasibility of using layered membranes made of doped semiconductor materials for separation and filtering of ions. The model developed as a result of this program will be further utilized for simulation of the electrically tunable membrane and electrolyte solution with a coarse-grained Brownian dynamics model of a biomolecule immersed in this solution. This project will stimulate future research on the effect of the membrane electrostatic potential over ionic and biomolecular movement through the pore with the main goal to demonstrate tunable control of the membrane for application in protein and biomolecule separation, concentration and filtering. The broader impact of this program is in directly addressing the need for developing new technologies for separation and filtering of biomolecules. The emergence of tunable protein and ion filters will have a beneficial impact on industry, research and society by broadening the application of a unified device towards multiple means and ease of integration with silicon-based technology in lab-on-a-chip and micro- and nanofluidic devices. Thus, an important aim of the program will be to establish a collaboration with an experimental group with expertise in the fields of membrane technologies or separation techniques to secure further testing and implemantation of the proposed ideas and methods in practice. This project will support two graduate students at Clarkson University (CU). International collaboration with the Moscow State University (MSU) will be strengthened by offering two summer positions to its undergraduate students for research projects within the framework of the program. A summer research position will be offered to a disabled undergraduate student at CU, and another summer position will be offered to a student outside of CU. The results of this program will be published in top journals and will be presented at national and international conferences. The PI will also maintain a research web-site to insure a wider public access to the results. The developed models will enrich the Computer Modeling in Physics course at CU which is offered by the PI every semester.
EAGER研究的目的是展示使用分层纳米多孔半导体膜进行可调离子和蛋白质分离和过滤的可行性。这一目标将通过使用复杂的计算模型来实现,该模型先前已被PI用于描述纳米多孔半导体膜的静电行为,包括偏置下的分层膜,作为用于离子和生物分子操作的可调电子设备。这项工作建立在众所周知的半导体材料的电可调谐性和电偏置下纳米多孔半导体膜中的电荷反转现象的基础上,PI最近证明了这一点。所提出的膜的新奇在于在n-和p-掺杂的半导体材料的分层中利用相反的掺杂以形成p-n结膜,用于对横穿膜的纳米孔中的静电势景观进行通用的电控制。该计划的智力价值是开发由半导体材料组成的纳米多孔膜的自洽模型,并浸入电解质溶液中,其中向半导体层和电解质溶液施加电偏压,导致溶液中的离子通过纳米孔的运动。该模型将用于理解和控制膜行为,并应用于离子分离和过滤。将半导体材料用于膜的优点在于这些材料的电可调谐性以及这种膜易于集成在芯片实验室和纳米流体装置中。因此,在各种半导体膜中的纳米孔中的离子电荷反转的效果及其对通过纳米孔的离子传输的影响的理论理解可以在纳米技术和生物工程中找到广泛的应用,并且将有助于理解生物和仿生系统中的类似过程。这个重点计划的主要目标是显示使用掺杂半导体材料制成的分层膜分离和过滤离子的可行性。作为该计划的结果开发的模型将被进一步用于模拟的电可调膜和电解质溶液的粗粒度的布朗动力学模型的生物分子沉浸在这个解决方案。该项目将刺激未来的研究,对离子和生物分子运动通过孔的膜静电势的影响,其主要目标是展示可调控制的膜在蛋白质和生物分子分离,浓缩和过滤中的应用。该计划的更广泛影响是直接解决了开发生物分子分离和过滤新技术的需求。可调蛋白质和离子过滤器的出现将对工业,研究和社会产生有益的影响,通过扩大统一设备的应用,实现多种手段,并易于与芯片实验室和微纳米流体设备中的硅基技术集成。因此,该计划的一个重要目标是与具有膜技术或分离技术领域专业知识的实验小组建立合作,以确保在实践中进一步测试和实施所提出的想法和方法。该项目将支持两名研究生在克拉克森大学(CU)。与莫斯科州立大学(MSU)的国际合作将通过在该计划框架内为本科生提供两个暑期职位来加强。一个暑期研究职位将提供给一名残疾本科生在CU,另一个暑期职位将提供给CU以外的学生。该计划的结果将发表在顶级期刊上,并将在国家和国际会议上发表。PI还将维护一个研究网站,以确保更广泛的公众访问结果。开发的模型将丰富计算机建模物理课程在CU这是由PI每学期提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Gracheva其他文献
Controlled DNA Translocation Through a Nanopore Membrane with Different Electrostatic Landscapes
- DOI:
10.1016/j.bpj.2008.12.3859 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Alexey Nikolaev;Maria Gracheva - 通讯作者:
Maria Gracheva
Analysis of the iron states in iron-containing pharmaceutical products using Mössbauer spectroscopy
- DOI:
10.1016/j.jpba.2023.115745 - 发表时间:
2024-01-05 - 期刊:
- 影响因子:
- 作者:
Irina V. Alenkina;Andrey V. Chukin;Gregory Leitus;Olga V. Denisova;Maria Gracheva;Israel Felner;Ernő Kuzmann;Zoltán Homonnay;Michael I. Oshtrakh - 通讯作者:
Michael I. Oshtrakh
Electrostatic Trapping of Polymers During Translocation Through a Semiconductor Nanopore
- DOI:
10.1016/j.bpj.2010.12.1131 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
George T. Nelson;Maria Gracheva - 通讯作者:
Maria Gracheva
Modeling of Ionic Currents in a Semiconductor Nanopore
- DOI:
10.1016/j.bpj.2009.12.3251 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Alexey Nikolaev;Maria Gracheva - 通讯作者:
Maria Gracheva
Electrostatic Trapping of DNA during Translocation through an Electrically Tunable Nanopore in a P-N Semiconductor Membrane
- DOI:
10.1016/j.bpj.2011.11.3954 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Dmitriy Melnikov;George Nelson;Maria Gracheva - 通讯作者:
Maria Gracheva
Maria Gracheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Gracheva', 18)}}的其他基金
CAREER: Coupling nanoscale device modeling with coarse-grained biomolecular simulations
职业:将纳米级器件建模与粗粒度生物分子模拟相结合
- 批准号:
1352218 - 财政年份:2014
- 资助金额:
$ 12.25万 - 项目类别:
Continuing Grant
相似海外基金
RUI: Atomically flat 3D metal-2D layered semiconductor devices for electronic and optoelectronic applications
RUI:用于电子和光电应用的原子级平面 3D 金属-2D 分层半导体器件
- 批准号:
2151971 - 财政年份:2022
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Layered metallic material/semiconductor heterostructures for harsh-environment electronics
用于恶劣环境电子产品的层状金属材料/半导体异质结构
- 批准号:
20H02611 - 财政年份:2020
- 资助金额:
$ 12.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation and comprehensive exploration of high performance thermoelectric semiconductor utilizing natural quantum structure of layered transition metal compound
利用层状过渡金属化合物天然量子结构的高性能热电半导体的创制与综合探索
- 批准号:
19H02425 - 财政年份:2019
- 资助金额:
$ 12.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doping-free ferromagnetic semiconductor based on 2D layered materials
基于二维层状材料的无掺杂铁磁半导体
- 批准号:
18K13785 - 财政年份:2018
- 资助金额:
$ 12.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Large-scale quantum-continuum simulation of layered metal oxide semiconductor photoelectrodes under finite-temperature electrochemical conditions
职业:有限温度电化学条件下层状金属氧化物半导体光电极的大规模量子连续模拟
- 批准号:
1654625 - 财政年份:2017
- 资助金额:
$ 12.25万 - 项目类别:
Continuing Grant
Hybrid Materials by Integration of Semiconductor Nanowires and Layered Crystals: Chemical Transformations and Functional Properties
半导体纳米线和层状晶体集成的混合材料:化学转化和功能特性
- 批准号:
1607795 - 财政年份:2016
- 资助金额:
$ 12.25万 - 项目类别:
Continuing Grant
Processing of Layered Semiconductor-Core Optical Fibers for Mid-IR Applications
用于中红外应用的分层半导体芯光纤的加工
- 批准号:
1301108 - 财政年份:2013
- 资助金额:
$ 12.25万 - 项目类别:
Standard Grant
Charge carrier dynamics in layered semiconductor nanocrystals
层状半导体纳米晶体中的载流子动力学
- 批准号:
317452-2007 - 财政年份:2008
- 资助金额:
$ 12.25万 - 项目类别:
Postgraduate Scholarships - Doctoral
Charge carrier dynamics in layered semiconductor nanocrystals
层状半导体纳米晶体中的载流子动力学
- 批准号:
317452-2007 - 财政年份:2007
- 资助金额:
$ 12.25万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mechanical deformation of layered semiconductor structures
层状半导体结构的机械变形
- 批准号:
DP0344167 - 财政年份:2003
- 资助金额:
$ 12.25万 - 项目类别:
Discovery Projects