ATD: DEEP SEQUENCING OF MICROBIAL POPULATIONS: DISENTANGLING DIVERSITY, DYNAMICS, AND ERRORS
ATD:微生物群体的深度测序:解开多样性、动态和错误
基本信息
- 批准号:1120699
- 负责人:
- 金额:$ 74.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep sequencing of microbial populations is a potentially powerful probe of their diversity and their dynamical evolutionary history. Unfortunately, the ability to analyze deep sequencing data and to infer information in the presence of errors has far from kept up with DNA sequencing capabilities. The difficulties are particularly pronounced for investigating the fine-scale diversity in a population of closely related microbes. The investigator and his colleagues will develop new algorithms for extraction of reliable information on the genomic diversity of microbial populations and analyze the short-term dynamical evolutionary processes that can generate such diversity. The algorithms will be based on modeling the processes that produce errors and biases in deep sequencing data, primarily the PCR amplification of the DNA and the sequencing itself. But in order to make useful inferences about fine-scale diversity, far better understanding is needed of the evolutionary dynamics of large microbial populations. Thus a spectrum of evolutionary scenarios will be modeled and analyzed focussing on the diversity and clues it may give to the evolutionary history. The algorithms developed for disentangling the diversity from errors will then be focussed and adapted to use the expectations from the evolutionary modeling as prior information and thereby distinguish between different scenarios. This will include developing optimized strategies for depth, breadth, and timing of DNA sequencing.Evolution of animals is usually very slow, but bacteria and viruses evolve extremely fast and this evolution leads to major threats to humans. For example, the evolution of usually innocuous bacteria within children with cystic fibrosis is what eventually leads to their premature death, and, on a global scale, evolution of influenza is what causes new epidemics. Better understanding and observations of evolution of pathogens is sorely needed. In the laboratory, bacteria and viruses also evolve --- and this evolution can be directed. Although artificial evolution can lead to many benefits, such as bacteria that eat pollutants, it can also be used for nefarious purposes. A crucial capability, such as for investigation of the anthrax attacks ten years ago, is to determine the evolutionary history from samples: when, where, and how they evolved. Fortunately, DNA sequencing has become so inexpensive that one can not only sequence many individual bacteria or viruses, but also sequence whole populations. This enables direct observations of the evolution of a population. the spectrum of differences among the individuals that provides the variation on which natural selection acts, and clues to the evolutionary history. But DNA sequencing produces many errors which make extraction of the useful information exceedingly difficult. This project will develop new algorithms for disentangling the actual DNA sequences from the errors. In parallel, sophisticated mathematical modeling will be used to explore various possible evolutionary histories and the resulting sequence variations. These will be put together to develop strategies for optimal use of DNA sequencing for inferring key aspects of the evolution of bacterial and viral populations, and understanding and predicting their consequences.
微生物种群的深度测序是其多样性及其动态进化历史的潜在有力探针。 不幸的是,分析深度测序数据和在存在错误的情况下推断信息的能力远远赶不上DNA测序能力。在调查密切相关的微生物群体的精细尺度多样性时,困难尤其明显。研究人员和他的同事将开发新的算法,用于提取有关微生物种群基因组多样性的可靠信息,并分析可以产生这种多样性的短期动态进化过程。这些算法将基于对深度测序数据中产生错误和偏差的过程进行建模,主要是DNA的PCR扩增和测序本身。但是,为了对精细尺度的多样性做出有用的推断,需要更好地了解大型微生物种群的进化动力学。 因此,一系列的进化情景将被建模和分析,重点是多样性和它可能给进化历史的线索。然后,为从错误中分离出多样性而开发的算法将被集中和调整,以使用来自进化建模的期望作为先验信息,从而区分不同的场景。这将包括为DNA测序的深度、广度和时间制定优化策略。动物的进化通常非常缓慢,但细菌和病毒的进化非常快,这种进化导致对人类的重大威胁。例如,囊性纤维化儿童体内通常无害的细菌的进化最终导致他们过早死亡,而在全球范围内,流感的进化是导致新流行病的原因。迫切需要更好地了解和观察病原体的演变。 在实验室里,细菌和病毒也会进化,而且这种进化是可以被引导的。 虽然人工进化可以带来许多好处,比如细菌可以吃污染物,但它也可以用于邪恶的目的。一个关键的能力,例如对十年前炭疽袭击的调查,是从样本中确定进化历史:它们何时、何地以及如何进化。幸运的是,DNA测序已经变得如此便宜,以至于人们不仅可以对许多单个细菌或病毒进行测序,而且还可以对整个种群进行测序。这使得能够直接观察种群的进化。个体之间的差异谱,提供了自然选择作用的变异,以及进化历史的线索。 但是DNA测序会产生许多错误,这使得提取有用的信息变得非常困难。 该项目将开发新的算法,用于从错误中解开实际的DNA序列。与此同时,复杂的数学模型将用于探索各种可能的进化历史和由此产生的序列变异。这些将被放在一起,以制定最佳使用DNA测序的策略,以推断细菌和病毒种群进化的关键方面,并理解和预测其后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Fisher其他文献
ournal of Statistical Mechanics : J Theory and Experiment Evolutionary dynamics and statistical physics
统计力学杂志:J理论与实验进化动力学与统计物理学
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daniel Fisher;Michael Lässig;B. Shraiman - 通讯作者:
B. Shraiman
Microwave photonic self-interference cancellation system using a slow and fast light delay line
使用慢光和快光延迟线的微波光子自干扰消除系统
- DOI:
10.1109/ipcon.2014.6995324 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. P. Chang;Joanna Wang;Monica Z. Lu;Daniel Fisher;Brian Chen;P. Prucnal - 通讯作者:
P. Prucnal
Three-Dimensional Wind Measurements and Modeling Using a Bi-Static Fabry-Perot Interferometer System in Brazil
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daniel Fisher - 通讯作者:
Daniel Fisher
Transfer of transdermally applied testosterone to clothing: a comparison of a testosterone patch versus a testosterone gel.
将透皮应用的睾酮转移到衣服上:睾酮贴片与睾酮凝胶的比较。
- DOI:
10.1111/j.1743-6109.2005.20232.x - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
N. Mazer;Daniel Fisher;Jerome A. Fischer;Michael Cosgrove;Damon Bell;B. Eilers - 通讯作者:
B. Eilers
Sleeping policemen for DNA replication?
DNA 复制的睡眠警察?
- DOI:
10.1038/ncb0704-576 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:19.100
- 作者:
Daniel Fisher;Marcel Méchali - 通讯作者:
Marcel Méchali
Daniel Fisher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Fisher', 18)}}的其他基金
Towards Understanding Fine-Scale Microbial Diversity
理解精细微生物多样性
- 批准号:
2210386 - 财政年份:2022
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Managing Ecological and Cultural Value on Rural Lands
博士论文研究:农村土地生态与文化价值管理
- 批准号:
1756340 - 财政年份:2018
- 资助金额:
$ 74.41万 - 项目类别:
Standard Grant
Urbanization, Infrastructure, and Intra-Indigenous Relations
城市化、基础设施和原住民内部关系
- 批准号:
1658261 - 财政年份:2017
- 资助金额:
$ 74.41万 - 项目类别:
Standard Grant
Collaborative Research: The Genetic, Epigenetic, and Immunological Foundation of Cancer Evolution
合作研究:癌症进化的遗传、表观遗传和免疫学基础
- 批准号:
1545840 - 财政年份:2016
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
Evolutionary Dynamics and Diversity in High Dimensions
高维的进化动力学和多样性
- 批准号:
1607606 - 财政年份:2016
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
Recombination, Genetic Interactions, and Observable Evolutionary Dynamics
重组、遗传相互作用和可观察的进化动力学
- 批准号:
1305433 - 财政年份:2013
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
Collaborative Research: Paleobiology and Extinction of Mammoths in northern Siberia and Wrangel Island
合作研究:西伯利亚北部和弗兰格尔岛的古生物学和猛犸象灭绝
- 批准号:
0545095 - 财政年份:2006
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
Statistical Physics in Random Media
随机介质中的统计物理
- 批准号:
0229243 - 财政年份:2003
- 资助金额:
$ 74.41万 - 项目类别:
Continuing Grant
相似国自然基金
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
- 批准号:61170020
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Deep Web敏感聚合信息保护方法研究
- 批准号:61003054
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
- 批准号:61070122
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Deep Sequencing of Relapse and Refractory Hodgkin Lymphoma Genomes: A Study of Tumor Biology and Evolution
复发和难治性霍奇金淋巴瘤基因组的深度测序:肿瘤生物学和进化的研究
- 批准号:
10351582 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
- 批准号:
10679308 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 74.41万 - 项目类别:
Discovering new microbes and metabolisms in deep sea sediments using metagenomic sequencing
使用宏基因组测序发现深海沉积物中的新微生物和新陈代谢
- 批准号:
557616-2021 - 财政年份:2022
- 资助金额:
$ 74.41万 - 项目类别:
Postdoctoral Fellowships
Detection of the whole biota with environmental DNA measured PCR-free ultra-deep whole genome sequencing
用环境 DNA 检测整个生物群免 PCR 超深度全基因组测序
- 批准号:
22K18429 - 财政年份:2022
- 资助金额:
$ 74.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
SBIR Phase I: An Easy RNA-Adenylation Method for Deep Sequencing of Picogram RNA Samples with High Resolution
SBIR 第一阶段:一种简单的 RNA 腺苷酸化方法,可对皮克级 RNA 样品进行高分辨率深度测序
- 批准号:
2151149 - 财政年份:2022
- 资助金额:
$ 74.41万 - 项目类别:
Standard Grant
Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
- 批准号:
RGPIN-2021-04072 - 财政年份:2022
- 资助金额:
$ 74.41万 - 项目类别:
Discovery Grants Program - Individual
Flexible and robust deep learning models for integrative analysis of single-cell RNA sequencing data
灵活而强大的深度学习模型,用于单细胞 RNA 测序数据的综合分析
- 批准号:
RGPIN-2021-04072 - 财政年份:2021
- 资助金额:
$ 74.41万 - 项目类别:
Discovery Grants Program - Individual
Discovering new microbes and metabolisms in deep sea sediments using metagenomic sequencing
使用宏基因组测序发现深海沉积物中的新微生物和新陈代谢
- 批准号:
557616-2021 - 财政年份:2021
- 资助金额:
$ 74.41万 - 项目类别:
Postdoctoral Fellowships
Improving Sepsis Care with Deep RNA Sequencing Data
利用深度 RNA 测序数据改善脓毒症护理
- 批准号:
10665687 - 财政年份:2021
- 资助金额:
$ 74.41万 - 项目类别: