Non-monotonicity, consistency, and rationality in human reasoning
人类推理的非单调性、一致性和合理性
基本信息
- 批准号:202154989
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Logical frameworks of non-monotonic reasoning extend classical logics in order to justify defeasible conclusions from knowledge or belief bases. These logics aim at making explicit the rational core of commonsense reasoning, i.e., human reasoning in everyday situations. This project will be settled at the intersection of cognitive modeling of human reasoning and philosophical foundation of formal, non-monotonic logics. It will analyze the extent to which logical approaches of non-monotonic reasoning discussed in the literature allow for representing human deductive processes as well as the rationality criteria that underlie such processes. To do this, the project will conduct a series of cognitive studies on paradigmatic reasoning tasks such as the classical suppression tasks and newly developed tasks that will help to analyze consistency preservation in human reasoning. Based on the empirical findings we will develop a cognitive model of human deductive processes and analyze this cognitive model with regard to the previously determined rationality criteria. The cognitive model will be evaluated in further experiments to assess its predictive power for “rational” and “irrational” processes in human reasoning.
非单调推理的逻辑框架扩展了经典逻辑,以便从知识或信念基础中证明不可行的结论是正确的。这些逻辑旨在阐明常识推理的理性核心,即日常情景中的人类推理。这个项目将在人类推理的认知建模和形式化、非单调逻辑的哲学基础的交叉点上解决。它将分析文献中讨论的非单调推理的逻辑方法允许表示人类演绎过程的程度,以及这些过程背后的合理性标准。为此,该项目将对聚合推理任务进行一系列认知研究,如经典的抑制任务和新开发的任务,这些任务将有助于分析人类推理中的一致性保持。在实证研究的基础上,我们将建立一个人类演绎过程的认知模型,并根据先前确定的合理性标准对该认知模型进行分析。该认知模型将在进一步的实验中进行评估,以评估其对人类推理中“理性”和“非理性”过程的预测能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Markus Knauff其他文献
Professor Dr. Markus Knauff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Markus Knauff', 18)}}的其他基金
Coordination Project of the Priority Program "New Frameworks of Rationality"
优先项目“理性新框架”协调项目
- 批准号:
201319509 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Priority Programmes
Cognitive and cortixal correlates and computational modeling of spatial belief revision
认知和皮质关联以及空间信念修正的计算模型
- 批准号:
68175591 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Negatively dependent sampling and monotonicity conditions
负相关采样和单调性条件
- 批准号:
567057-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Development of monotonicity analysis method for optimal resource operation
开发最优资源运营的单调性分析方法
- 批准号:
20K14711 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
- 批准号:
20K03627 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conditionals and topology; the origins of non-monotonicity
条件和拓扑;
- 批准号:
17K02699 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solidarity, monotonicity, and externalities in cooperative game theory
合作博弈论中的团结性、单调性和外部性
- 批准号:
288880950 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Monotonicity of conditional variance
条件方差的单调性
- 批准号:
482630-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
- 批准号:
15K04962 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solidarity and monotonicity in cooperative game theory
合作博弈论中的团结性和单调性
- 批准号:
261749485 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Monotonicity formula methods for nonlinear PDEs
非线性偏微分方程的单调性公式方法
- 批准号:
EP/K024566/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant