NEB: Scalable Perpendicular All-Spin Non-Volatile Logic Devices and Circuits with Hybrid Interconnection
NEB:具有混合互连的可扩展垂直全自旋非易失性逻辑器件和电路
基本信息
- 批准号:1124831
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTIntellectual Merit: This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation. The research will provide an alternative to CMOS technology based on an all-spin logic device. Although nanomagnetism plays a fundamental role in existing magnetic storage technologies, the implementation of processing has traditionally required the conversion of magnetic information (spin) to charge and then back to spin after the processing step is complete. This approach, however, realizes none of the advantages of working with pure spin currents, which promise much lower power dissipation and potentially greater scalability. An all-spin logic concept that has been inspired by a decade of progress in semiconductor and metallic spintronics would achieve all-spin operation, but only if substantial materials engineering, processing, and integration challenges can be overcome. An interdisciplinary team has been assembled that is uniquely positioned to address these challenges, which include (1) engineering of bits which can function as either magnetic tunnel junction spin injectors (for inputs) or giant magnetoresistance (GMR) sensors (for low impedance outputs), (2) integrating these bits with interconnecting channels fabricated from either normal metals, graphene or ZnO, (3) developing a process that will provide for isolation of the input and output stages of the bits while preserving the desirable spin transport properties of the interconnects, (4) a test protocol grounded in both spin transport physics and circuit design principles, and (5) a clear path for integration. The approach addresses one of the severe roadblocks to practical spintronics, which is the need for efficient spin transport across interfaces while meeting the simultaneous demands of an economic and fully scalable processing technology. The team consists of an expert on perpendicular magnetic anisotropy materials and spintronic device engineering (Wang), a spin-transport physicist (Crowell), a circuit design and fabrication engineer (Kim), a semiconductor materials and device engineer (Koester), and a semiconductor spintronic materials engineer (Ding, an international collaborator). Broader Impacts: The unique combination of materials engineering, device physics, process engineering, and circuit design in this program will lead to a new family of logic devices. Just as importantly, these four technical components will play a critical role in training the engineers and scientists who will be carrying out nanoelectronic research well beyond 2020. The team provides true interdisciplinary mentorship for graduate students in multiple departments. In addition to technical training in at least two disciplines, the PIs will emphasize student interaction with industrial partners and participation in activities that allow students to explain nanotechnology and spintronics to the public. The participants in this program will also interact continuously with an active community of researchers in magnetism, semiconductor device physics at the University of Minnesota and in the surrounding community. This will prepare the diverse group of project participants for careers spanning a continuum from basic research to the implementation of new technologies. Mentorship of younger students, including undergraduate researchers, is also a critical component of the program. The project will proactively recruit minorities, women, and under-represented groups as well as leverage existing university-wide efforts for promoting diversity and outreach.
摘要智力优势:该项目是在Nanoelectronics for 2020及以后的竞争中获得的,得到了国家科学基金会多个部门和部门以及半导体研究公司Nanoelectronics Research Initiative的支持。这项研究将为基于全自旋逻辑器件的CMOS技术提供一种替代方案。虽然纳米磁性在现有的磁存储技术中发挥着重要作用,但传统上,处理的实现需要将磁信息(自旋)转换为电荷,然后在处理步骤完成后再转换回自旋。然而,这种方法没有实现纯自旋电流工作的任何优点,纯自旋电流保证了低得多的功耗和潜在的更大的可扩展性。受到半导体和金属自旋电子学十年进展的启发,全自旋逻辑概念将实现全自旋操作,但前提是可以克服大量的材料工程,加工和集成挑战。一个跨学科的团队已经组装,是独特的定位,以解决这些挑战,其中包括(1)工程位,可以作为磁性隧道结自旋注入器,(用于输入)或巨磁阻(GMR)传感器(对于低阻抗输出),(2)将这些位与由普通金属、石墨烯或ZnO制造的互连通道集成,(3)开发将提供位的输入和输出级的隔离同时保持互连的期望自旋输运性质的工艺,(4)基于自旋输运物理和电路设计原理的测试协议,以及(5)用于集成的清晰路径。该方法解决了实际自旋电子学的严重障碍之一,即需要在满足经济和完全可扩展的处理技术的同时实现跨接口的高效自旋传输。该团队由垂直磁各向异性材料和自旋电子器件工程专家(Wang)、自旋输运物理学家(Crowell)、电路设计和制造工程师(Kim)、半导体材料和器件工程师(Koester)以及半导体自旋电子材料工程师(Ding,国际合作者)组成。更广泛的影响:材料工程,器件物理,工艺工程和电路设计的独特组合将导致一个新的逻辑器件系列。 同样重要的是,这四个技术组成部分将在培训工程师和科学家方面发挥关键作用,这些工程师和科学家将在2020年以后进行纳米电子研究。该团队为多个部门的研究生提供真正的跨学科指导。除了至少两个学科的技术培训外,PI还将强调学生与工业合作伙伴的互动,并参与允许学生向公众解释纳米技术和自旋电子学的活动。 该计划的参与者还将与明尼苏达大学和周围社区的磁性,半导体器件物理学研究人员的活跃社区不断互动。 这将为不同的项目参与者群体做好准备,使他们能够从事从基础研究到新技术实施的连续职业。 年轻学生的导师,包括本科研究人员,也是该计划的一个重要组成部分。该项目将积极招募少数民族,妇女和代表性不足的群体,并利用现有的大学范围内的努力,促进多样性和外展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian-Ping Wang其他文献
Numerical study of the reverse-rotating waves in rotating detonation engine with a hollow combustor
空心燃烧室旋转爆震发动机反向旋转波的数值研究
- DOI:
10.1016/j.actaastro.2020.02.008 - 发表时间:
2020-05 - 期刊:
- 影响因子:3.5
- 作者:
Xiang-Yang Liu;Yan-Liang Chen;Zhi-Jie Xia;Jian-Ping Wang - 通讯作者:
Jian-Ping Wang
High-moment magnetic nanoparticles
- DOI:
10.1007/s11051-020-4758-0 - 发表时间:
2020-03-03 - 期刊:
- 影响因子:2.600
- 作者:
Jinming Liu;Diqing Su;Kai Wu;Jian-Ping Wang - 通讯作者:
Jian-Ping Wang
Incorporation of Phosphorus Impurities in a Silicon Nanowire Transistor with a Diameter of 5 nm
直径 5 nm 的硅纳米线晶体管中掺入磷杂质
- DOI:
10.3390/mi10020127 - 发表时间:
2019-02 - 期刊:
- 影响因子:3.4
- 作者:
Yanfeng Jiang;Wenjie Wang;Zirui Wang;Jian-Ping Wang - 通讯作者:
Jian-Ping Wang
An active direction control method in rotating detonation combustor
旋转爆震燃烧室内的主动方向控制方法
- DOI:
10.1016/j.ijhydene.2022.05.135 - 发表时间:
2022-06-30 - 期刊:
- 影响因子:8.300
- 作者:
Zhaohua Sheng;Miao Cheng;Dawen Shen;Jian-Ping Wang - 通讯作者:
Jian-Ping Wang
Numerical simulation of wave mode transition in rotating detonation engine with OpenFOAM
基于 OpenFOAM 的旋转爆震发动机波模态转变数值模拟
- DOI:
10.1016/j.ijhydene.2020.05.100 - 发表时间:
2020-07 - 期刊:
- 影响因子:7.2
- 作者:
Zhi-Jie Xia;Ming-Yi Luan;Xiang-Yang Liu;Jian-Ping Wang - 通讯作者:
Jian-Ping Wang
Jian-Ping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian-Ping Wang', 18)}}的其他基金
SHF: Small: Collaborative Research: Energy Efficient Strain Assisted Spin Transfer Torque Memory
SHF:小型:合作研究:节能应变辅助自旋转移扭矩存储器
- 批准号:
1816406 - 财政年份:2018
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
GOALI: New Design, Fabricaiton and Investigation of Novel Spin Torque Transfer Devices
GOALI:新型旋转扭矩传递装置的新设计、制造和研究
- 批准号:
0702264 - 财政年份:2007
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Design and Implementation of a Smart and Highly Efficient Magnetic Heating Scheme for Biomedical Applications
生物医学应用智能高效磁加热方案的设计与实现
- 批准号:
0730825 - 财政年份:2007
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 130万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
- 批准号:
2346712 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant