Multifunctional Piezoelectric Carbon Fibers for Enhanced Structural Safety and Performance

用于增强结构安全性和性能的多功能压电碳纤维

基本信息

  • 批准号:
    1132414
  • 负责人:
  • 金额:
    $ 5.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-12-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

The research goals are to a) develop theoretical and finite element models to predict the coupling and strength of active piezoceramic carbon fiber, b) determine the geometry to maximize the fiber strength and coupling for various applications, c) identify the fabrication techniques for the active carbon fiber and d) construct a series of active fibers and active fiber lamina for experimental analysis. This will be a new composite material with several multifunctional properties whose properties will be explored in this research. The use of piezoceramic materials for structural actuation is a fairly well developed practice that has found use in a wide variety of applications. However, just as advanced composites offer many benefits over traditional engineering materials for structural design, actuators that utilize the active properties of piezoelectric fibers can improve upon many of the limitations encountered when using monolithic piezoceramic devices. Many new piezoelectric fiber composites have been developed, however almost all studies have implemented these devices such that they are surface bonded patches used for sensing or actuation. The research program will develop a novel active piezoelectric carbon fiber that can be laid up in a composite structural material to perform sensing and actuation, in addition to providing critical load bearing functionality.The successful development of the multifunctional fiber will make broad impacts across engineering disciplines making the research of great value to society. The sensing and actuation aspects of the multifunctional material will allow composites to be designed with embedded structural health monitoring, power generation, vibration sensing and control, damping and shape control through anisotropic actuation. Additionally, the multifunctional fiber could allow the structure to be used for energy storage, which is a major issue with the advancement of wireless electronics and sensors. Each of these potential applications resulting from the fundamental development of the active carbon fiber will have broad impacts on the performance and safety of modern structures. Furthermore, the advances made through the development of multifunctional material systems will advance the way in which adaptive structures are designed and the modeling of composite materials with an active interphase layer. The project will recruit underrepresented participants through the use of undergraduate research internships. Additionally, researchers will participate in the Michigan Tech summer youth program by developing and teaching week long summer courses to under represented groups of pre-college students. These lessons will incorporate results of this research and will encourage individuals to pursue a college education in engineering through an introduction to its multidisciplinary nature. Enhancement of infrastructure will occur, as new desktop experiments are designed, and this will spill over into class room education. The effort also contains a collaboration of research and technical ideas with a leading research groups at Los Alamos National Labs and the NASA Jet Propulsion Lab. Furthermore, the collaboration with Los Alamos will lead to research projects in their Dynamic Summer School program to encourage undergraduate students to pursue a graduate degree in the field of dynamics.
研究目标是:a)建立理论和有限元模型来预测有源压电陶瓷碳纤维的耦合和强度;b)确定几何形状以最大限度地提高各种应用的纤维强度和耦合;c)确定活性炭纤维的制造技术;d)构建一系列用于实验分析的有源纤维和有源纤维层。这将是一种具有多种多功能性能的新型复合材料,其性能将在本研究中进行探索。压电陶瓷材料用于结构驱动是一种相当成熟的实践,已经在各种各样的应用中得到了应用。然而,就像先进的复合材料在结构设计上比传统的工程材料有很多优点一样,利用压电纤维的主动特性的执行器可以改善使用单片压电陶瓷器件时遇到的许多限制。许多新的压电纤维复合材料已经被开发出来,然而几乎所有的研究都实现了这些装置,使它们成为用于传感或驱动的表面粘合片。该研究项目将开发一种新型的有源压电碳纤维,它可以被放置在复合结构材料中,除了提供关键的承载功能外,还可以执行传感和驱动。多功能纤维的成功开发将对整个工程学科产生广泛的影响,对社会具有重要的研究价值。多功能材料的传感和驱动方面将允许复合材料设计具有嵌入式结构健康监测,发电,振动传感和控制,阻尼和形状控制通过各向异性驱动。此外,多功能光纤可以使该结构用于能量存储,这是无线电子和传感器进步的一个主要问题。这些潜在的应用都是由碳纤维的基础发展而产生的,它们将对现代结构的性能和安全产生广泛的影响。此外,通过开发多功能材料系统所取得的进步将推动自适应结构的设计和具有活性相间层的复合材料的建模方式。该项目将通过使用本科生研究实习来招募代表性不足的参与者。此外,研究人员将参与密歇根理工大学的暑期青年项目,为未被充分代表的大学预科学生群体开发和教授为期一周的暑期课程。这些课程将结合本研究的结果,并将鼓励个人通过介绍其多学科性质来追求工程的大学教育。随着新的桌面实验的设计,基础设施将得到加强,这将渗透到课堂教育中。这项工作还包括与洛斯阿拉莫斯国家实验室和美国宇航局喷气推进实验室的领先研究小组进行研究和技术思想的合作。此外,与洛斯阿拉莫斯的合作将导致他们的动态暑期学校项目的研究项目,以鼓励本科生攻读动态领域的研究生学位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Sodano其他文献

Henry Sodano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Sodano', 18)}}的其他基金

Multifunctional Fibers for Damage Detection in Reinforced Composites
用于增强复合材料损伤检测的多功能纤维
  • 批准号:
    1762369
  • 财政年份:
    2018
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Wall Shear Stress Sensor for Engineering Fluid Dynamics in Biomedical Systems
UNS:合作研究:用于生物医学系统工程流体动力学的壁剪切应力传感器
  • 批准号:
    1510855
  • 财政年份:
    2015
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Nanowire Interfaces for Composites with High Strength Across Strain Rates
用于在应变率范围内具有高强度的复合材料的纳米线接口
  • 批准号:
    1621135
  • 财政年份:
    2015
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Enhancing Strain Transfer in Multiferroics through Pure Phase Functional Gradients
通过纯相功能梯度增强多铁性材料中的应变传递
  • 批准号:
    1620313
  • 财政年份:
    2015
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Self-Healing Materials Enabled through Embedded Sensing and Stimulus Delivery
通过嵌入式传感和刺激传递实现自我修复的材料
  • 批准号:
    1620328
  • 财政年份:
    2015
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Wall Shear Stress Sensor for Engineering Fluid Dynamics in Biomedical Systems
UNS:合作研究:用于生物医学系统工程流体动力学的壁剪切应力传感器
  • 批准号:
    1565863
  • 财政年份:
    2015
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Nanowire Interfaces for Composites with High Strength Across Strain Rates
用于在应变率范围内具有高强度的复合材料的纳米线接口
  • 批准号:
    1333825
  • 财政年份:
    2013
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Enhancing Strain Transfer in Multiferroics through Pure Phase Functional Gradients
通过纯相功能梯度增强多铁性材料中的应变传递
  • 批准号:
    1333818
  • 财政年份:
    2013
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Self-Healing Materials Enabled through Embedded Sensing and Stimulus Delivery
通过嵌入式传感和刺激传递实现自我修复的材料
  • 批准号:
    1200641
  • 财政年份:
    2012
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
Biologically Inspired Autonomic Structural Materials with Controlled Toughening and Healing
具有受控增韧和愈合能力的生物启发自主结构材料
  • 批准号:
    1132415
  • 财政年份:
    2010
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant

相似海外基金

Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Discovery Projects
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Research Grant
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Continuing Grant
FMSG: Bio: Interface-Directed Manufacturing of Piezoelectric Biocrystal Thin Films
FMSG:生物:压电生物晶体薄膜的界面导向制造
  • 批准号:
    2328250
  • 财政年份:
    2024
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Standard Grant
AI/machine learning based on piezoelectric AE sensors for qu antification of damage in composite structures
基于压电声发射传感器的人工智能/机器学习,用于量化复合结构的损伤
  • 批准号:
    2883998
  • 财政年份:
    2023
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Studentship
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
  • 批准号:
    10759862
  • 财政年份:
    2023
  • 资助金额:
    $ 5.33万
  • 项目类别:
Porous Piezoelectric Single Crystal Sensors (POPSICALS)
多孔压电单晶传感器 (POPSICALS)
  • 批准号:
    EP/X018679/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Research Grant
Improving yield and ultrasound performance of thin film piezoelectric sensors
提高薄膜压电传感器的产量和超声性能
  • 批准号:
    10061438
  • 财政年份:
    2023
  • 资助金额:
    $ 5.33万
  • 项目类别:
    Collaborative R&D
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
  • 批准号:
    10668030
  • 财政年份:
    2023
  • 资助金额:
    $ 5.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了