Nano-Porous Thermoelectric Based Knudsen Gas Pumps
基于纳米多孔热电的努森气泵
基本信息
- 批准号:1133877
- 负责人:
- 金额:$ 28.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shamus McNamara, University of LouisvilleProposal #1133877The Knudsen pump is a thermally driven gas pump which features no moving parts, potentially providing very high reliability. For MEMS devices, the lack of seals is especially attractive. The Knudsen pump uses the principle of thermal transpiration as the basis of its operation, and thus must operate in either the free molecular flow regime or near the free molecular flow regime in the transitional flow regime. For operation at atmospheric pressure, sub-micron channel cross-sections are required for operation, with channel diameters on the order of 100 nm commonly utilized. The objectives of this research project are to (1) improve the efficiency of the Knudsen gas pump, (2) develop a method to integrate the Knudsen pump with microfluidic applications in a simple, efficient manner, (3) better model and understand gas pumps based upon the thermal transpiration effect through unobstructed channels, (4) explore efficient methods of using the Knudsen Pump to generate pneumatic energy from heat sources, such as body heat and solar thermal energy.New thermoelectric materials will be investigated for use in the Knudsen pump, and prototype pumps using these materials will be tested. Studies on the effects of surface roughness of the channels making up the Knudsen pump will be performed, as there is experimental evidence to suggest that the tangential momentum accommodation coefficient (TMAC) can have a significant impact on the performance of the Knudsen pump. The expected outcomes include a smaller, more efficient Knudsen pump with better pump performance, a better understanding of the limitations of the Knudsen pump, a better theoretical model describing how the Knudsen pump operates, a better understanding of how microfluidic devices can incorporate the Knudsen pump, and a demonstration of the Knudsen pump used to generate pneumatic energy from heat sources.Because the Knudsen pump features no moving parts, an efficient Knudsen pump has many applications where pump size, noise, or reliability is a concern. It can also be integrated with microfluidic devices, providing a key component for many lab-on-a-chip devices that are under development for medical diagnostics and fast, efficient drug and materials research.As a passive device, the Knudsen pump has the potential to generate pneumatic energy from waste heat, such as the catalytic converter of an automobile or manufacturing plant. It can be powered from the sun, generating pneumatic power than can be used to run a generator. And it can be powered from human heat, opening up applications for biomedical devices.
Knudsen泵是一种热驱动的气泵,没有运动部件,可能提供非常高的可靠性。对于MEMS器件而言,缺乏密封尤其具有吸引力。克努森泵使用热蒸腾原理作为其运行的基础,因此必须在自由分子流动状态或在过渡流动状态中接近自由分子流动状态下运行。对于大气压下的操作,需要亚微米的通道截面进行操作,通常使用的通道直径在100 nm左右。本研究项目的目标是:(1)提高Knudsen气泵的效率;(2)开发一种简单、高效的将Knudsen气泵与微流体应用相结合的方法;(3)通过通畅的通道,基于热蒸腾效应更好地建模和理解气泵;(4)探索利用Knudsen气泵从热源(如体热和太阳能)产生气动能量的有效方法。新的热电材料将被研究用于Knudsen泵,使用这些材料的原型泵将进行测试。由于有实验证据表明切向动量调节系数(TMAC)对克努森泵的性能有重大影响,因此将对组成克努森泵的通道表面粗糙度的影响进行研究。预期的结果包括一个更小,更有效的克努森泵与更好的泵性能,更好地理解克努森泵的局限性,一个更好的理论模型描述克努森泵如何运作,更好地理解如何微流体装置可以纳入克努森泵,并演示克努森泵用于从热源产生气动能量。由于Knudsen泵的特点是没有运动部件,一个高效的Knudsen泵有许多应用,泵的尺寸,噪音,或可靠性是一个问题。它还可以与微流体设备集成,为许多正在开发的用于医疗诊断和快速,高效的药物和材料研究的芯片实验室设备提供关键组件。作为一种被动装置,克努森泵有潜力从废热中产生气动能量,如汽车或制造工厂的催化转化器。它可以从太阳能中获得动力,产生比可以用来运行发电机的气动动力。它还可以由人体热量供电,为生物医学设备开辟了应用领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shamus McNamara其他文献
Passive communication for low power distributed sensors using MEMS optical cavities
使用 MEMS 光腔的低功耗分布式传感器的无源通信
- DOI:
10.1088/1361-6439/ad2910 - 发表时间:
2024 - 期刊:
- 影响因子:2.3
- 作者:
Jacob Addison Schopp;Shamus McNamara - 通讯作者:
Shamus McNamara
Shamus McNamara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shamus McNamara', 18)}}的其他基金
MRI: Acquisition of a Low Pressure Chemical Vapor Deposition System for Applications in Micro/Nano Technology
MRI:采购用于微/纳米技术应用的低压化学气相沉积系统
- 批准号:
0722789 - 财政年份:2007
- 资助金额:
$ 28.92万 - 项目类别:
Standard Grant
On-Chip Gas Pumping With No Moving Parts
无移动部件的片上气体泵送
- 批准号:
0601453 - 财政年份:2006
- 资助金额:
$ 28.92万 - 项目类别:
Standard Grant
相似海外基金
Materials Nanotectonics: Designing Conductive Inorganic Porous Materials
材料纳米构造:设计导电无机多孔材料
- 批准号:
FL230100095 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Australian Laureate Fellowships
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
- 批准号:
EP/Y017412/1 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Fellowship
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Standard Grant
Porous materials with interconvertible states
具有可相互转换状态的多孔材料
- 批准号:
24K17695 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Continuing Grant
CAREER: Multiscale Bacterial Transport in Porous Media
职业:多孔介质中的多尺度细菌传输
- 批准号:
2340501 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Continuing Grant
CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
- 批准号:
2340993 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Continuing Grant
CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
- 批准号:
2413574 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Continuing Grant
Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
- 批准号:
DP240100961 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Discovery Projects
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 28.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




