Combining Knowledge And Data Driven Approaches to Inverse Imaging Problems
结合知识和数据驱动的方法来解决逆向成像问题
基本信息
- 批准号:EP/V029428/1
- 负责人:
- 金额:$ 158.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Imaging plays an important role in many applications in the natural sciences, medicine and the life sciences, as well as in engineering and industrial applications. An example is an MRI image of a brain used by a physician to detect a brain tumour such as glioblastoma. At the core of many imaging applications is an inverse problem, i.e. the mathematical problem of reconstructing the image from data produced by the imaging machine, for example the MRI machine. Such inverse imaging problems have been approached for many years in a "knowledge-driven" way, using information about the device and the imaging procedure. However, the knowledge-driven models cannot always be solved, are computationally very expensive, or deliver suboptimal images.In recent years, new "data-driven" methods, which use past examples of successfully reconstructed images together with the data that produced them, have been shown to produce some impressive results in image reconstruction. The problem with such data-driven methods, however, is that currently they do not have "mathematical guarantees", in other words one cannot state the degree to which the results are reliable. They also have the property that even small deviations in the data could result in large differences in the results. This clearly could have devastating implications for many applications.In this proposal, we will develop a new hybrid approach that combines the best of knowledge-driven and data-driven methods for inverse imaging problems, crucially providing the mathematical guarantees essential to being able to use the methods in real-world applications. Once the challenging task of developing these mathematical methods is achieved, we will apply this learning to produce an imaging pipeline that draws into a single step the stages of the imaging process, thus optimising the process further. We will apply the new methods to real-world applications. For example, using the data driven mathematical methods developed in the project and working closely with the Radiology Department, we will create an end-to-end workflow where multi-modal image acquisition, reconstruction, segmentation and image analyses are performed jointly and optimised for the end task of real time treatment response assessment in patients with metastatic cancer.
成像在自然科学、医学和生命科学以及工程和工业应用中都扮演着重要的角色。一个例子是医生用脑部的核磁共振图像来检测脑瘤,如胶质母细胞瘤。许多成像应用的核心是逆问题,即从成像机器(例如,MRI机器)产生的数据重建图像的数学问题。这种逆成像问题多年来一直是以“知识驱动”的方式,利用有关设备和成像过程的信息来解决的。然而,知识驱动的模型并不总是能够解决的,计算非常昂贵,或者提供次优的图像。近年来,新的数据驱动的方法被证明在图像重建中产生了一些令人印象深刻的结果,这些方法使用过去成功重建图像的例子和产生它们的数据。然而,这种数据驱动的方法的问题是,目前它们没有“数学保证”,换句话说,人们无法说明结果的可靠程度。它们还具有这样一种特性,即即使数据中的微小偏差也可能导致结果的巨大差异。在这项建议中,我们将开发一种新的混合方法,将知识驱动和数据驱动的最佳方法结合起来用于逆成像问题,关键是提供关键的数学保证,以便能够在现实世界的应用中使用这些方法。一旦完成了开发这些数学方法的具有挑战性的任务,我们将应用这一学习来产生一种成像管道,将成像过程的各个阶段集中到一个步骤中,从而进一步优化该过程。我们将把新方法应用到实际应用中。例如,使用项目中开发的数据驱动的数学方法,并与放射科密切合作,我们将创建一个端到端的工作流程,其中联合执行多模式图像采集、重建、分割和图像分析,并针对转移性癌症患者的实时治疗反应评估的最终任务进行优化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning for COVID-19 diagnosis and prognostication: lessons for amplifying the signal whilst reducing the noise
用于 COVID-19 诊断和预测的机器学习:放大信号同时减少噪音的经验教训
- DOI:10.17863/cam.65566
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Driggs D
- 通讯作者:Driggs D
Spectral decomposition of atomic structures in heterogeneous cryo-EM
异质冷冻电镜中原子结构的光谱分解
- DOI:10.1088/1361-6420/acb2ba
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Esteve-Yagüe C
- 通讯作者:Esteve-Yagüe C
Imaging With Equivariant Deep Learning: From unrolled network design to fully unsupervised learning
- DOI:10.1109/msp.2022.3205430
- 发表时间:2022-09
- 期刊:
- 影响因子:14.9
- 作者:Dongdong Chen;M. Davies;Matthias Joachim Ehrhardt;C. Schönlieb;Ferdia Sherry;Julián Tachella
- 通讯作者:Dongdong Chen;M. Davies;Matthias Joachim Ehrhardt;C. Schönlieb;Ferdia Sherry;Julián Tachella
Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 - 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part III
医学图像计算和计算机辅助干预 - MICCAI 2022 - 第 25 届国际会议,新加坡,2022 年 9 月 18-22 日,会议记录,第三部分
- DOI:10.1007/978-3-031-16437-8_69
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aviles-Rivero A
- 通讯作者:Aviles-Rivero A
Deep learning-based Segmentation of Multi-site Disease in Ovarian Cancer
基于深度学习的卵巢癌多部位疾病分割
- DOI:10.17863/cam.93840
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Buddenkotte T
- 通讯作者:Buddenkotte T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carola-Bibiane Schönlieb其他文献
On the caveats of AI autophagy
关于人工智能自噬的注意事项
- DOI:
10.1038/s42256-025-00984-1 - 发表时间:
2025-02-10 - 期刊:
- 影响因子:23.900
- 作者:
Xiaodan Xing;Fadong Shi;Jiahao Huang;Yinzhe Wu;Yang Nan;Sheng Zhang;Yingying Fang;Michael Roberts;Carola-Bibiane Schönlieb;Javier Del Ser;Guang Yang - 通讯作者:
Guang Yang
Can generative AI replace immunofluorescent staining processes? A comparison study of synthetically generated cellpainting images from brightfield
- DOI:
10.1016/j.compbiomed.2024.109102 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Xiaodan Xing;Siofra Murdoch;Chunling Tang;Giorgos Papanastasiou;Jan Cross-Zamirski;Yunzhe Guo;Xianglu Xiao;Carola-Bibiane Schönlieb;Yinhai Wang;Guang Yang - 通讯作者:
Guang Yang
Source-detector trajectory optimization for FOV extension in dental CBCT imaging
- DOI:
10.1016/j.csbj.2024.11.010 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
S M Ragib Shahriar Islam;Ander Biguri;Claudio Landi;Giovanni Di Domenico;Benedikt Schneider;Pascal Grün;Cristina Sarti;Ramona Woitek;Andrea Delmiglio;Carola-Bibiane Schönlieb;Dritan Turhani;Gernot Kronreif;Wolfgang Birkfellner;Sepideh Hatamikia - 通讯作者:
Sepideh Hatamikia
Radiological tumour classification across imaging modality and histology
不同成像方式和组织学的放射学肿瘤分类
- DOI:
10.1038/s42256-021-00377-0 - 发表时间:
2021-08-09 - 期刊:
- 影响因子:23.900
- 作者:
Jia Wu;Chao Li;Michael Gensheimer;Sukhmani Padda;Fumi Kato;Hiroki Shirato;Yiran Wei;Carola-Bibiane Schönlieb;Stephen John Price;David Jaffray;John Heymach;Joel W. Neal;Billy W. Loo;Heather Wakelee;Maximilian Diehn;Ruijiang Li - 通讯作者:
Ruijiang Li
A linear transportation math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e545" class="math"msupmrowmi mathvariant="normal"L/mi/mrowmrowmip/mi/mrow/msup/math distance for pattern recognition
用于模式识别的线性传输数学距离
- DOI:
10.1016/j.patcog.2023.110080 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:7.600
- 作者:
Oliver M. Crook;Mihai Cucuringu;Tim Hurst;Carola-Bibiane Schönlieb;Matthew Thorpe;Konstantinos C. Zygalakis - 通讯作者:
Konstantinos C. Zygalakis
Carola-Bibiane Schönlieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carola-Bibiane Schönlieb', 18)}}的其他基金
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037308/1 - 财政年份:2024
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
- 批准号:
EP/T017961/1 - 财政年份:2020
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
PET++: Improving Localisation, Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomised Optimisation
PET:通过随机优化改善临床和医学 PET 成像的定位、诊断和量化
- 批准号:
EP/S026045/1 - 财政年份:2019
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
Robust and Efficient Analysis Approaches of Remote Imagery for Assessing Population and Forest Health in India
用于评估印度人口和森林健康的稳健有效的遥感影像分析方法
- 批准号:
EP/T003553/1 - 财政年份:2019
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging
EPSRC 多模态临床影像数学和统计分析中心
- 批准号:
EP/N014588/1 - 财政年份:2016
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
Efficient computational tools for inverse imaging problems
用于逆成像问题的高效计算工具
- 批准号:
EP/M00483X/1 - 财政年份:2014
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
Sparse & Higher Order Image Restoration
疏
- 批准号:
EP/J009539/1 - 财政年份:2012
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
相似海外基金
Towards knowledge discovery from imperfect and evolving data
从不完美和不断发展的数据中发现知识
- 批准号:
DP240103070 - 财政年份:2024
- 资助金额:
$ 158.04万 - 项目类别:
Discovery Projects
FAIRification of multiOmics data to link databases and create knowledge graphs for fermented foods
多组学数据的公平化以链接数据库并创建发酵食品的知识图
- 批准号:
EP/Y032748/1 - 财政年份:2024
- 资助金额:
$ 158.04万 - 项目类别:
Research Grant
PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
- 批准号:
2345794 - 财政年份:2024
- 资助金额:
$ 158.04万 - 项目类别:
Continuing Grant
An Indigenous youth-led approach to making meaning and mobilizing Indigenous youth health data and wellness knowledge for Raven's Children VI
以土著青年为主导的方法,为乌鸦之子创造意义并动员土著青年健康数据和健康知识 VI
- 批准号:
499259 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Operating Grants
Travel: Student Support for the 2023 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2023)
旅行:2023 年 ACM SIGKDD 知识发现和数据挖掘会议 (KDD 2023) 的学生支持
- 批准号:
2323492 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Standard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Continuing Grant
CAREER: Statistically-Sound Knowledge Discovery from Data
职业:从数据中发现统计上合理的知识
- 批准号:
2238693 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Continuing Grant
Linguistic knowledge and language change: Testing and forming a theory of social meaning formation based on Irish English usage data
语言知识和语言变化:基于爱尔兰英语使用数据测试和形成社会意义形成理论
- 批准号:
22KK0193 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
- 批准号:
2302274 - 财政年份:2023
- 资助金额:
$ 158.04万 - 项目类别:
Standard Grant