ABI Development: Refinement Algorithms and Server for Protein Docking
ABI 开发:蛋白质对接的细化算法和服务器
基本信息
- 批准号:1147082
- 负责人:
- 金额:$ 55.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Protein-protein interactions are integral to virtually all biological pathways. Predicting these interactions and the function of the protein complex in key to understanding how biological pathways function. Detailed multistage docking algorithms, which starts from the unbound structures of two proteins, can determine the structure of the protein complex. The docking server, ClusPro, strives to make these docking algorithms accessible to researchers. However, the current refinement stage is computationally too demanding for use in an online server, and hence is replaced by simple energy minimization. The ClusPro team will develop methods to perform side chain search within a traditionally rigid body docking algorithm, and to calculate escape times from each energy funnel by stochastic roadmap simulations. These methods will provide more efficient refinement and will help to identify near-native models, thereby improving the reliability and accuracy of predictions. The server will be implemented on a number of platforms, including supercomputers and multi-core desktops.ClusPro already has over 4500 users and runs over 1000 jobs per month. In 2011, 164 papers used models generated using the server to study problems in biology, biochemistry, and biotechnology. The upgraded server, with its simple user interface, will be particularly useful to experimentalist with no extensive computational experience, who will be able use it for generating models of protein interactions to explain their data. Graduate students will be trained to optimally combine high performance structure prediction algorithms with experimental data from a variety of low-resolution or non-structural techniques. Docking methods are also being incorporated into undergraduate courses to teach the biophysical principles of molecular recognition.
蛋白质之间的相互作用几乎是所有生物途径所不可或缺的。预测这些相互作用和蛋白质复合体的功能是理解生物途径如何发挥作用的关键。详细的多阶段对接算法从两个蛋白质的未结合结构开始,可以确定蛋白质复合体的结构。对接服务器ClusPro致力于让研究人员能够访问这些对接算法。然而,当前的精化阶段对计算要求太高,不适合在在线服务器中使用,因此被简单的能量最小化所取代。ClusPro团队将开发在传统刚体对接算法中执行侧链搜索的方法,并通过随机路线图模拟计算每个能量漏斗的逃逸时间。这些方法将提供更有效的改进,并将有助于识别接近本地的模型,从而提高预测的可靠性和准确性。该服务器将在多个平台上实施,包括超级计算机和多核台式机。ClusPro已经拥有超过4500名用户,每月运行超过1000个作业。2011年,164篇论文使用服务器生成的模型来研究生物学、生物化学和生物技术中的问题。升级后的服务器具有简单的用户界面,对于没有丰富计算经验的实验者来说特别有用,他们将能够使用它来生成蛋白质相互作用的模型来解释他们的数据。研究生将接受培训,以便将高性能的结构预测算法与各种低分辨率或非结构技术的实验数据最佳地结合起来。对接方法也被纳入本科课程,教授分子识别的生物物理原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandor Vajda其他文献
The ClusPro AbEMap web server for the prediction of antibody epitopes
用于预测抗体表位的 ClusPro AbEMap 网络服务器
- DOI:
10.1038/s41596-023-00826-7 - 发表时间:
2023-05-15 - 期刊:
- 影响因子:16.000
- 作者:
Israel T. Desta;Sergei Kotelnikov;George Jones;Usman Ghani;Mikhail Abyzov;Yaroslav Kholodov;Daron M. Standley;Dmitri Beglov;Sandor Vajda;Dima Kozakov - 通讯作者:
Dima Kozakov
The anti-coagulant dabigatran inhibits trypsin and has therapeutic activity in trypsin-dependent pancreatitis
抗凝剂达比加群抑制胰蛋白酶,并在胰蛋白酶依赖性胰腺炎中具有治疗活性。
- DOI:
10.1016/j.pan.2023.06.562 - 发表时间:
2023-11-05 - 期刊:
- 影响因子:2.700
- 作者:
Zsofia Gabriella Pesei;Zsanett Jancsó;Alexandra Demcsak;Vera Sahin-Tóth;Eszter Hegyi;Balazs Csaba Nemeth;Sandor Vajda;Miklos Sahin-Tóth - 通讯作者:
Miklos Sahin-Tóth
Misfolding emPRSS1/em variant p.Ala61Val in a case of suspected intrauterine pancreatitis
在一个疑似宫内胰腺炎病例中错误折叠的 emPRSS1/em 变体 p.Ala61Val
- DOI:
10.1016/j.pan.2024.12.013 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.700
- 作者:
Máté Sándor;David S. Vitale;Zoltán Attila Nagy;Sherif Y. Ibrahim;Maisam Abu-El-Haija;Maria Lazou;Sandor Vajda;Miklós Sahin-Tóth - 通讯作者:
Miklós Sahin-Tóth
Which cryptic sites are feasible drug targets?
哪些隐蔽的位点是可行的药物靶点?
- DOI:
10.1016/j.drudis.2024.104197 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:7.500
- 作者:
Maria Lazou;Dima Kozakov;Diane Joseph-McCarthy;Sandor Vajda - 通讯作者:
Sandor Vajda
Numerical deconvolution using system identification methods
- DOI:
10.1007/bf01061863 - 发表时间:
1988-02-01 - 期刊:
- 影响因子:2.800
- 作者:
Sandor Vajda;Keith R. Godfrey;Peter Valko - 通讯作者:
Peter Valko
Sandor Vajda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandor Vajda', 18)}}的其他基金
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
ABI Development: Utilization of diverse data in exploring protein-protein interactions
ABI 开发:利用多种数据探索蛋白质-蛋白质相互作用
- 批准号:
1458509 - 财政年份:2015
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Computational Tools and A Database for the Analysis of Binding Sites in Enzymes
用于分析酶结合位点的计算工具和数据库
- 批准号:
0213832 - 财政年份:2002
- 资助金额:
$ 55.22万 - 项目类别:
Continuing grant
US-Turkey Cooperative Research: Peptide-Protein Docking and Binding Free Energy Calculation
美国-土耳其合作研究:肽-蛋白质对接和结合自由能计算
- 批准号:
0002127 - 财政年份:2000
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Protein Model Refinement and Flexible Docking by Constrained Free Energy Minimization
通过约束自由能最小化进行蛋白质模型细化和灵活对接
- 批准号:
9904834 - 财政年份:1999
- 资助金额:
$ 55.22万 - 项目类别:
Continuing grant
Computational Methods for Determining Binding Free Energies
确定结合自由能的计算方法
- 批准号:
9630188 - 财政年份:1996
- 资助金额:
$ 55.22万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development, Evaluation and Refinement of Metalloenediyne Complex Cyclization Kinetics for Biological Applications
用于生物应用的金属烯二炔络合物环化动力学的开发、评估和完善
- 批准号:
2247314 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
- 批准号:
10740025 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Mode
通过定性幸存者研究理解和支持自残康复:自残康复模式的开发和完善
- 批准号:
2889169 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Studentship
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Model
通过定性幸存者研究理解和支持自残康复:自残康复模型的开发和完善
- 批准号:
2886825 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Studentship
PROJECT 2: Development and Refinement of Predictive Models for Designing Immunotherapy Combination Treatments
项目 2:设计免疫疗法联合治疗的预测模型的开发和完善
- 批准号:
10526104 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Development of Deductive Failure Reasoner with Stepwise Refinement and Theorem Proving
逐步细化和定理证明的演绎失败推理机的开发
- 批准号:
22K11987 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PROJECT 2: Development and Refinement of Predictive Models for Designing Immunotherapy Combination Treatments
项目 2:开发和完善设计免疫疗法联合治疗的预测模型
- 批准号:
10708927 - 财政年份:2022
- 资助金额:
$ 55.22万 - 项目类别:
Metabolic refinement of sensory cell development
感觉细胞发育的代谢精细化
- 批准号:
BB/V006371/1 - 财政年份:2021
- 资助金额:
$ 55.22万 - 项目类别:
Research Grant
Pilot Core (AD/ADRD Focus): Technology Development and Refinement
试点核心(AD/ADRD 重点):技术开发和完善
- 批准号:
10491905 - 财政年份:2021
- 资助金额:
$ 55.22万 - 项目类别:
Pilot Core (AD/ADRD Focus): Technology Development and Refinement
试点核心(AD/ADRD 重点):技术开发和完善
- 批准号:
10683478 - 财政年份:2021
- 资助金额:
$ 55.22万 - 项目类别: