Protein Model Refinement and Flexible Docking by Constrained Free Energy Minimization
通过约束自由能最小化进行蛋白质模型细化和灵活对接
基本信息
- 批准号:9904834
- 负责人:
- 金额:$ 55.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-10-01 至 2003-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on two fundamental problems. The first is the development of flexible protein docking algorithms for the case in which the association occurs with substantial conformational change involving side chains and loop regions. The second problem is the development of con-formational search algorithms for refining low resolution protein models with 6 to 10 A RMSD from the native structure, obtained by homology modeling, fold recognition. or ab initio structure prediction. In both applications, free energy potentials, combining molecular mechanics with em-pirical solvation and entropic terms, will be used as target functions. It has been shown that such potentials can be more effective in decoy discrimination than purely empirical functions. However even with a normalization procedure to reduce the noise in the van der Waals energy, the combined potentials exhibit a multicomponent/multifrequency behavior, and are very difficult to minimize. The free energy is regarded as the sum of three functions: a smooth component that includes elec-trostatic, solvation, and entropic contributions, an intermediate frequency component of internal (bonded) energy terms, and the van der Waals term which is essentially a high frequency noise, and carries little information about the distance from the native state.Most established methods of finding the global minimum of a multicomponent/multifrequency potential generate a large number of trial conformations and then rank them according to their free energies. This project will use a radically different approach that mimics native folding or association pathways. The basic idea of the method is performing minimization of the smooth free energy components, but restricting the search to regions of the conformational space with low van der Waals energy. Since this group has already shown that the combined potential has good discriminatory power, the key to a successful docking or model refinement is the ability to generate enough near-native conformations. It is expected that exploiting the gradient of the smooth free energy components will substantially increase the efficiency of sampling, and the resulting methods will be useful to the broad molecular biology/biochemistry community.
这个项目着重于两个基本问题。第一个是灵活的蛋白质对接算法的发展的情况下,其中的协会发生大量的构象变化,涉及侧链和环区。第二个问题是构象搜索算法的发展,用于从天然结构中提炼具有6至10 A RMSD的低分辨率蛋白质模型,通过同源建模,折叠识别获得。或从头算结构预测。在这两个应用程序中,自由能势,结合分子力学与经验溶剂化和熵项,将被用作目标函数。它已被证明,这样的潜力可以更有效的诱饵歧视比纯粹的经验功能。然而,即使使用归一化程序来减少货车德瓦尔斯能量中的噪声,组合电势也表现出多分量/多频率行为,并且非常难以最小化。自由能被认为是三个函数之和:包括静电、溶剂化和熵贡献的平滑分量,内部(键合)能量项的中频分量,以及本质上是高频噪声的货车德瓦耳斯项,大多数已建立的寻找多组分/多组分系统全局最小值的方法,多频势产生大量的尝试构象,然后根据它们的自由能对它们进行排序。这个项目将使用一种完全不同的方法,模仿天然折叠或关联途径。该方法的基本思想是进行最小化的平滑自由能组件,但限制搜索的构象空间的区域与低货车德瓦尔斯能量。由于这一组已经表明,组合电位具有良好的区分能力,成功对接或模型改进的关键是能够产生足够的近天然构象。预计利用平滑自由能分量的梯度将大大提高采样效率,并且所得方法将对广泛的分子生物学/生物化学社区有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandor Vajda其他文献
The ClusPro AbEMap web server for the prediction of antibody epitopes
用于预测抗体表位的 ClusPro AbEMap 网络服务器
- DOI:
10.1038/s41596-023-00826-7 - 发表时间:
2023-05-15 - 期刊:
- 影响因子:16.000
- 作者:
Israel T. Desta;Sergei Kotelnikov;George Jones;Usman Ghani;Mikhail Abyzov;Yaroslav Kholodov;Daron M. Standley;Dmitri Beglov;Sandor Vajda;Dima Kozakov - 通讯作者:
Dima Kozakov
The anti-coagulant dabigatran inhibits trypsin and has therapeutic activity in trypsin-dependent pancreatitis
抗凝剂达比加群抑制胰蛋白酶,并在胰蛋白酶依赖性胰腺炎中具有治疗活性。
- DOI:
10.1016/j.pan.2023.06.562 - 发表时间:
2023-11-05 - 期刊:
- 影响因子:2.700
- 作者:
Zsofia Gabriella Pesei;Zsanett Jancsó;Alexandra Demcsak;Vera Sahin-Tóth;Eszter Hegyi;Balazs Csaba Nemeth;Sandor Vajda;Miklos Sahin-Tóth - 通讯作者:
Miklos Sahin-Tóth
Misfolding emPRSS1/em variant p.Ala61Val in a case of suspected intrauterine pancreatitis
在一个疑似宫内胰腺炎病例中错误折叠的 emPRSS1/em 变体 p.Ala61Val
- DOI:
10.1016/j.pan.2024.12.013 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.700
- 作者:
Máté Sándor;David S. Vitale;Zoltán Attila Nagy;Sherif Y. Ibrahim;Maisam Abu-El-Haija;Maria Lazou;Sandor Vajda;Miklós Sahin-Tóth - 通讯作者:
Miklós Sahin-Tóth
Which cryptic sites are feasible drug targets?
哪些隐蔽的位点是可行的药物靶点?
- DOI:
10.1016/j.drudis.2024.104197 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:7.500
- 作者:
Maria Lazou;Dima Kozakov;Diane Joseph-McCarthy;Sandor Vajda - 通讯作者:
Sandor Vajda
Numerical deconvolution using system identification methods
- DOI:
10.1007/bf01061863 - 发表时间:
1988-02-01 - 期刊:
- 影响因子:2.800
- 作者:
Sandor Vajda;Keith R. Godfrey;Peter Valko - 通讯作者:
Peter Valko
Sandor Vajda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandor Vajda', 18)}}的其他基金
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 55.64万 - 项目类别:
Standard Grant
ABI Development: Utilization of diverse data in exploring protein-protein interactions
ABI 开发:利用多种数据探索蛋白质-蛋白质相互作用
- 批准号:
1458509 - 财政年份:2015
- 资助金额:
$ 55.64万 - 项目类别:
Standard Grant
ABI Development: Refinement Algorithms and Server for Protein Docking
ABI 开发:蛋白质对接的细化算法和服务器
- 批准号:
1147082 - 财政年份:2012
- 资助金额:
$ 55.64万 - 项目类别:
Standard Grant
Computational Tools and A Database for the Analysis of Binding Sites in Enzymes
用于分析酶结合位点的计算工具和数据库
- 批准号:
0213832 - 财政年份:2002
- 资助金额:
$ 55.64万 - 项目类别:
Continuing grant
US-Turkey Cooperative Research: Peptide-Protein Docking and Binding Free Energy Calculation
美国-土耳其合作研究:肽-蛋白质对接和结合自由能计算
- 批准号:
0002127 - 财政年份:2000
- 资助金额:
$ 55.64万 - 项目类别:
Standard Grant
Computational Methods for Determining Binding Free Energies
确定结合自由能的计算方法
- 批准号:
9630188 - 财政年份:1996
- 资助金额:
$ 55.64万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Model
通过定性幸存者研究理解和支持自残康复:自残康复模型的开发和完善
- 批准号:
2886825 - 财政年份:2023
- 资助金额:
$ 55.64万 - 项目类别:
Studentship
Refinement of the network model in Diachronic Construction Grammar
历时构式语法中网络模型的细化
- 批准号:
21K00489 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Refinement of Cyberattack Generation Process Model by Using Machine Learning and Domain Knowledge
利用机器学习和领域知识细化网络攻击生成过程模型
- 批准号:
21KK0178 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of seamless tsunami and storm surge inundation model using adaptive mesh refinement
使用自适应网格细化开发无缝海啸和风暴潮淹没模型
- 批准号:
17K06577 - 财政年份:2017
- 资助金额:
$ 55.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Refinement of secondary components of PM 2.5 by spatially seamless air pollutant transport model
通过空间无缝空气污染物传输模型细化 PM 2.5 的次要成分
- 批准号:
17H04711 - 财政年份:2017
- 资助金额:
$ 55.64万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Refinement of Evacuation Behavior Model Capable of Various Disaster and Evaluation of Evacuation Safety and Robustness
多种灾害下的疏散行为模型细化及疏散安全性和鲁棒性评价
- 批准号:
16K06642 - 财政年份:2016
- 资助金额:
$ 55.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical refinement and empirical test of the physical activity-mediated Demand-Control (pamDC) model
体力活动介导的需求控制(pamDC)模型的理论完善和实证检验
- 批准号:
280477745 - 财政年份:2016
- 资助金额:
$ 55.64万 - 项目类别:
Research Grants
Task C32: Model Refinement in Pig-Tailed Macaques to AssessTherapeutics for Chlamydia trachomatis
任务 C32:改进猪尾猕猴模型以评估沙眼衣原体治疗方法
- 批准号:
9144274 - 财政年份:2015
- 资助金额:
$ 55.64万 - 项目类别:
Task C32: Model Refinement in Pig-Tailed Macaques to AssessTherapeutics for Chlamydia trachomatis
任务 C32:改进猪尾猕猴模型以评估沙眼衣原体治疗方法
- 批准号:
9266256 - 财政年份:2015
- 资助金额:
$ 55.64万 - 项目类别:
Refinement and Extension of Higher-Order Model Checking
高阶模型检查的细化和扩展
- 批准号:
15H05706 - 财政年份:2015
- 资助金额:
$ 55.64万 - 项目类别:
Grant-in-Aid for Scientific Research (S)