CAREER: Machine Learning Methods and Statistical Analysis Tools for Single Network Domains
职业:单一网络域的机器学习方法和统计分析工具
基本信息
- 批准号:1149789
- 负责人:
- 金额:$ 49.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Machine Learning Methods and Statistical Analysis Tools for Single Network DomainsMachine learning researchers focus on two distinct learning scenarios for structured network data (i.e., where there are statistical dependencies among the attributes of linked nodes). In the first scenario, the domain consists of a population of structured examples (e.g., chemical compounds) and we can reason about learning algorithms asymptotically, as the number of structured examples increases. In the second scenario, the domain consists of a single, potentially infinite-sized network (e.g., the World Wide Web). In these "single network" domains, an increase in data corresponds to acquiring a larger portion of the underlying network. Even when there are a set of network samples available for learning and prediction, they correspond to subnetworks drawn from the same underlying network and thus may be dependent. Although estimation and inference methods from the field of statistical relational learning have been successfully applied in single-network domains, the algorithms were initially developed for populations of networks, and thus the theoretical foundation for learning and inference in single networks is scant. This work focuses on the development of robust statistical methods for single network domains -- since many large network datasets about complex systems rarely have more than a few subnetworks available for model estimation and evaluation. Specifically, the aims of the project include (1) strengthening the theoretical foundation for learning in single network domains, (2) creating accurate methods for determining the significance of discovered patterns and features, (3) formulating novel model selection and evaluation methods, and (4) developing improved approaches for network learning and prediction based on the unique characteristics of single network domains.The research will enhance our understanding of the mechanisms that influence the performance of network analysis methods and drive the development novel methods for complex network domains. Expanding the applicability of machine learning techniques for single network domains could have a transformational impact across a broad range of areas (e.g., psychology, communications, education, political science) where current methods limit research to the investigation of processes in dyad or small group settings. Also, the project results will serve as an example application of computer science in the broader network science context, which will attract and retain students that might not otherwise be engaged by conventional CS topics. For more details see:http://www.cs.purdue.edu/homes/neville/research-nsf-career.html
职业:单一网络领域的机器学习方法和统计分析工具机器学习研究人员专注于结构化网络数据的两种不同的学习场景(即,在链接节点的属性之间存在统计依赖关系)。在第一个场景中,领域由一群结构化示例(例如,化合物)组成,随着结构化示例数量的增加,我们可以渐近地推理学习算法。在第二种情况下,域由一个单一的、可能无限大小的网络(例如,万维网)组成。在这些“单一网络”域中,数据的增加对应于获取底层网络的更大部分。即使存在一组可用于学习和预测的网络样本,它们也对应于从同一底层网络中提取的子网络,因此可能是依赖的。虽然统计关系学习领域的估计和推理方法已经成功地应用于单网络领域,但这些算法最初是为网络群体开发的,因此在单网络中学习和推理的理论基础不足。这项工作的重点是为单个网络域开发健壮的统计方法——因为关于复杂系统的许多大型网络数据集很少有几个子网可用于模型估计和评估。具体而言,该项目的目标包括:(1)加强单网络领域学习的理论基础;(2)创建准确的方法来确定发现的模式和特征的意义;(3)制定新的模型选择和评估方法;(4)根据单网络领域的独特特征开发改进的网络学习和预测方法。该研究将加深我们对影响网络分析方法性能的机制的理解,并推动复杂网络领域新方法的发展。扩大机器学习技术在单一网络领域的适用性可能会对广泛的领域(例如,心理学,通信,教育,政治学)产生变革性影响,目前的方法将研究限制在双组或小组设置中的过程调查。此外,项目结果将作为计算机科学在更广泛的网络科学背景下的应用示例,这将吸引和留住那些可能不参与传统计算机科学主题的学生。欲了解更多详情,请访问:http://www.cs.purdue.edu/homes/neville/research-nsf-career.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Neville其他文献
Dynamic Network Modeling from Motif-Activity
Motif-Activity 的动态网络建模
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Giselle Zeno;T. L. Fond;Jennifer Neville - 通讯作者:
Jennifer Neville
Variational Random Function Model for Network Modeling
用于网络建模的变分随机函数模型
- DOI:
10.1109/tnnls.2018.2837667 - 发表时间:
2019-01 - 期刊:
- 影响因子:10.4
- 作者:
Zenglin Xu;Bin Liu;Sh;ian Zhe;Haoli Bai;ZihanWang;Jennifer Neville - 通讯作者:
Jennifer Neville
1 Relational Dependency Networks
1 关系依赖网络
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jennifer Neville;David Jensen - 通讯作者:
David Jensen
Ensemble Learning for Relational Data
关系数据的集成学习
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hoda Eldardiry;Jennifer Neville;Ryan A. Rossi;L. D. Raedt - 通讯作者:
L. D. Raedt
Representations and Ensemble Methods for Dynamic Relational Classification
动态关系分类的表示和集成方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ryan A. Rossi;Jennifer Neville - 通讯作者:
Jennifer Neville
Jennifer Neville的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Neville', 18)}}的其他基金
III: Small: Transfer Learning Within and Across Networks for Collective Classification
III:小:网络内和网络间的迁移学习以进行集体分类
- 批准号:
1618690 - 财政年份:2016
- 资助金额:
$ 49.66万 - 项目类别:
Standard Grant
Student Travel Support for the 2012 ACM Conference on Knowledge Discovery and Data Mining (KDD 2012).
2012 年 ACM 知识发现和数据挖掘会议 (KDD 2012) 的学生差旅支持。
- 批准号:
1241017 - 财政年份:2012
- 资助金额:
$ 49.66万 - 项目类别:
Standard Grant
NETSE: Small: Towards Better Modeling of Communication Activity Dynamics in Large-Scale Online Social Networks
NETSE:小型:大规模在线社交网络中通信活动动态的更好建模
- 批准号:
1017898 - 财政年份:2010
- 资助金额:
$ 49.66万 - 项目类别:
Standard Grant
Machine learning techniques to model the impact of relational communication on distributed team effectiveness
机器学习技术来模拟关系沟通对分布式团队效率的影响
- 批准号:
0823313 - 财政年份:2008
- 资助金额:
$ 49.66万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 49.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




