CAREER: Floer Homology and Low-Dimensional Topology
职业:Floer 同调和低维拓扑
基本信息
- 批准号:1150872
- 负责人:
- 金额:$ 43.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies the topology and geometry of low-dimensional manifolds and the knots and surfaces embedded therein. Specific goals include a classification of knots in the 3-dimensional sphere which produce simple manifolds under surgery, topological characterization of knots which bound complex curves inside complex surfaces, and a deeper understanding of the structure of cobordism groups of knots and 3-manifolds. Primary tools for this study arise in symplectic geometry, gauge theory, and quantum algebra. Many of these tools come in the form of algebraic invariants e.g. Floer homology theories or combinatorial knot invariants such as Khovanov homology. The project also seeks to further our understanding of the invariants themselves, and a central theme is to determine the extent to which they faithfully represent the topological objects which they shadow. The specific mathematical goals of the project are complemented by concrete initiatives targeted at graduate and undergraduate education, together with activities aimed at an international community of topologists and geometers. For instance, a new graduate course will be designed and implemented whose dual focus is on the development of topological breadth and communication skills in a variety of scenarios. A summer school for undergraduates and a broad-interest conference on topology will be organized. Topology and geometry are mathematical fields which study shapes and spaces, and low-dimensional topology focuses on those shapes which are within or just out of reach of our vision. This project makes fundamental contributions to low-dimensional topology. One of the key problems that the project attacks is the mathematical theory of "knotting", an area which attempts to understand and quantify the method by which ideal strings become tangled and knotted in space. In addition to a fundamental role which knotting plays in low-dimensional topology, its theory has deep interactions with many seemingly unconnected areas of mathematics and physics, and even to areas such as polymer science. One of the central aims of the project is to understand how knots evolve over time. Imagine a movie in which a piece of string freely moves in space, becoming more or less tangled over time. Further imagine that at some frames in the movie more drastic phenomena occur such as the appearance or disappearance of a new loop of string or the gluing of two segments of the string together. Such a movie is called a "concordance", and using this idea one can treat knotted pieces of string in much the same way that we treat numbers; namely, one can add and subtract knots in an algebraic way. Understanding the arithmetic of knots turns out to have deep implications for the study of 4-dimensional space, one of the most difficult and least understood areas of modern mathematics. In addition to its specific mathematical aims, the project will also contribute in a significant way to graduate and undergraduate education and to a global research community through design and organization of innovative courses, workshops, and conferences.
本计画研究低维流形的拓扑与几何,以及其中的节点与曲面。具体目标包括三维球面上通过外科手术产生简单流形的纽结的分类,复杂曲线内部的纽结的拓扑特征 表面,并更深入地了解结和3-流形的协边群的结构。 主要的研究工具出现在辛几何,规范理论和量子代数。这些工具中的许多都是以代数不变量的形式出现的,例如Floer同源性理论或组合结不变量,例如Khovanov同源性。该项目还寻求进一步我们的不变量本身的理解,和一个中心主题是要确定在何种程度上,他们忠实地代表拓扑对象,他们的阴影。 该项目的具体数学目标的补充,针对研究生和本科生教育的具体举措,以及针对国际社会的拓扑学家和几何学家的活动。 例如,将设计和实施一门新的研究生课程,其双重重点是在各种情况下发展拓扑广度和沟通技能。 将组织一个本科生暑期班和一个关于拓扑学的广泛兴趣会议。 拓扑学和几何学是研究形状和空间的数学领域,低维拓扑学关注的是那些在我们视觉范围内或范围之外的形状。 该项目为低维拓扑学做出了重要贡献。 该项目攻击的关键问题之一是“打结”的数学理论,这是一个试图理解和量化理想弦在空间中缠结和打结的方法的领域。 除了打结在低维拓扑学中扮演的基本角色外,它的理论与许多看似无关的数学和物理领域,甚至与聚合物科学等领域有着深刻的相互作用。 该项目的中心目标之一是了解结如何随着时间的推移而演变。 想象一下,在一部电影中,一根绳子在空间中自由移动,随着时间的推移或多或少地纠缠在一起。 进一步想象,在电影中的某些帧中,发生了更剧烈的现象,例如新的一圈绳子的出现或消失,或者绳子的两段粘在一起。 这样的电影被称为“索引”,利用这个想法,我们可以用处理数字的方式来处理打结的绳子;也就是说,我们可以用代数的方式来增加和减少结。 理解节点的算术对四维空间的研究有着深远的影响,四维空间是现代数学中最困难和最不被理解的领域之一。 除了其具体的数学目标,该项目还将通过设计和组织创新课程,研讨会和会议,为研究生和本科生教育以及全球研究社区做出重大贡献。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On sutured Floer homology and the equivalence of Seifert surfaces
缝合Floer同源性与Seifert曲面的等价性
- DOI:10.2140/agt.2013.13.505
- 发表时间:2013
- 期刊:
- 影响因子:0.7
- 作者:Hedden, Matthew;Juhász, András;Sarkar, Sucharit
- 通讯作者:Sarkar, Sucharit
On the functoriality of Khovanov–Floer theories
论霍瓦诺夫·弗洛尔理论的函子性
- DOI:10.1016/j.aim.2019.01.026
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Baldwin, John A.;Hedden, Matthew;Lobb, Andrew
- 通讯作者:Lobb, Andrew
Dehn surgery, rational open books and knot Floer homology
- DOI:10.2140/agt.2013.13.1815
- 发表时间:2011-05
- 期刊:
- 影响因子:0.7
- 作者:M. Hedden;O. Plamenevskaya
- 通讯作者:M. Hedden;O. Plamenevskaya
Topologically slice knots of smooth concordance order two
平滑一致性二阶的拓扑切片结
- DOI:10.4310/jdg/1456754013
- 发表时间:2016
- 期刊:
- 影响因子:2.5
- 作者:Hedden, Matthew;Kim, Se-Goo;Livingston, Charles
- 通讯作者:Livingston, Charles
The pillowcase and traceless representations of knot groups II: a Lagrangian–Floer theory in the pillowcase
枕套和结群 II 的无痕表示:枕套中的拉格朗日-弗洛尔理论
- DOI:10.4310/jsg.2018.v16.n3.a5
- 发表时间:2018
- 期刊:
- 影响因子:0.7
- 作者:Hedden, Matthew;Herald, Christopher M.;Kirk, Paul
- 通讯作者:Kirk, Paul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hedden其他文献
Some remarks on cabling, contact structures, and complex curves
关于布线、接触结构和复杂曲线的一些评论
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Matthew Hedden - 通讯作者:
Matthew Hedden
Matthew Hedden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Hedden', 18)}}的其他基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Continuing Grant
Topology and Geometry at the Interface of Dimensions 3 and 4
3 维和 4 维交界处的拓扑和几何
- 批准号:
2104664 - 财政年份:2021
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
The 2017 Graduate Student Topology and Geometry Conference
2017年研究生拓扑与几何会议
- 批准号:
1715902 - 财政年份:2017
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
Floer Homology, Concordance, and Complex Curves
Floer 同源性、一致性和复杂曲线
- 批准号:
1709016 - 财政年份:2017
- 资助金额:
$ 43.4万 - 项目类别:
Continuing Grant
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
- 批准号:
0906258 - 财政年份:2009
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
- 批准号:
0503335 - 财政年份:2005
- 资助金额:
$ 43.4万 - 项目类别:
Fellowship Award
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Floer同调的谱不变量及其在Hamiltonian辛同胚群上的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
瞬子Floer同调与Khovanov同调
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
三维切触拓扑,Heegaard Floer同调,和范畴化
- 批准号:11601256
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
辫Floer同调及其推广
- 批准号:11526115
- 批准年份:2015
- 资助金额:2.6 万元
- 项目类别:数学天元基金项目
三维流形的Floer同调
- 批准号:11001147
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
- 批准号:
2303823 - 财政年份:2023
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 43.4万 - 项目类别:
Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
- 批准号:
2417229 - 财政年份:2023
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
CAREER: Bordered Floer homology and applications
职业:Bordered Floer 同源性和应用
- 批准号:
2145090 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Continuing Grant
Link Floer Homology and Kleinian Groups
Link Floer 同调和 Kleinian 群
- 批准号:
2203237 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
Equivariant Floer Homology, Concordance, and Homology Cobordism
等变 Floer 同源性、一致性和同源协调性
- 批准号:
2203828 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
New Perspectives in Heegaard Floer Homology
Heegaard Floer 同源性的新视角
- 批准号:
2204375 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
New Directions in Monopole Floer Homology
单极子同源性的新方向
- 批准号:
2203498 - 财政年份:2022
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
- 批准号:
2105501 - 财政年份:2021
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant