Floer Homology, Concordance, and Complex Curves
Floer 同源性、一致性和复杂曲线
基本信息
- 批准号:1709016
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study topological and geometric objects, using a broad array of tools from modern mathematics. A theme central to the project is deepening our understanding of 4-dimensional aspects of "knotting," an area which attempts to understand and quantify the method by which strings become tangled and knotted in space. In addition to a fundamental role that knot theory plays in topology, its has deep interactions with many seemingly unconnected areas of mathematics and physics, and even to areas such as polymer science and biology. One of the primary aims of the project is to understand both how knots evolve over time and the surfaces that they bound in 4-dimensional space. Imagine a movie in which a piece of string freely moves in space, becoming more or less tangled over time. Further, imagine that at some frames in the movie more drastic phenomena occur such as the appearance or disappearance of a new loop of string or the gluing of two segments of the string together. Such a movie is called a "cobordism," and using this idea one can treat knotted pieces of string in much the same way that we treat numbers; namely, one can add and subtract knots in an algebraic way. Understanding this arithmetic turns out to have deep implications for the study of 4-dimensional space, one of the most difficult and least understood areas of mathematics. Primary goals in this vein include understanding knotted curves whose cobordisms arise from complex polynomials and probing the aforementioned algebraic structures using tools inspired by mathematical physics. In addition to its mathematical goals, the project will contribute to the organization of conferences and workshops, and provide critical support for students.Knot theory and its 4-dimensional aspects play a fundamental role throughout the project and can be viewed as its primary focus. Specific goals include determining the faithfulness of geometric maps between concordance and cobordism groups, topological characterizations of knots that bound complex curves in Stein domains, and the development of algebraic tools to facilitate computations of subtle invariant of knots, tangles, and 3-manifolds defined by way of Lagrangian Floer homology and non-abelian gauge theory. The project crosses boundaries between topology, analysis, algebra, and combinatorics, and uses techniques from homological algebra, gauge theory, knot theory, contact geometry, and the theory of pseudo-holomorphic curves in symplectic manifolds.
这个项目将研究拓扑和几何对象,使用广泛的工具,从现代数学。该项目的一个中心主题是加深我们对“打结”的四维方面的理解,这是一个试图理解和量化弦在空间中缠结和打结的方法的领域。除了纽结理论在拓扑学中扮演的基本角色外,它还与许多看似无关的数学和物理领域,甚至与聚合物科学和生物学等领域有着深刻的相互作用。该项目的主要目的之一是了解结如何随着时间的推移而演变,以及它们在四维空间中的表面。想象一下,在一部电影中,一根绳子在空间中自由移动,随着时间的推移或多或少地纠缠在一起。此外,想象在电影中的某些帧处发生更剧烈的现象,例如新的绳环的出现或消失,或者绳的两个段粘合在一起。这样的电影被称为“配边主义”,利用这一思想,我们可以用处理数字的方式来处理打结的绳子;也就是说,我们可以用代数的方式来加减结。理解这种算法对四维空间的研究有着深远的影响,四维空间是数学中最困难和最不被理解的领域之一。 这方面的主要目标包括理解其配边来自复杂多项式的打结曲线,并使用数学物理启发的工具探索上述代数结构。 除了数学目标,该项目将有助于组织会议和研讨会,并为学生提供关键支持。结理论及其4维方面在整个项目中发挥着重要作用,可以被视为其主要焦点。 具体目标包括确定和谐和cobordism组之间的几何映射的忠实性,结的拓扑特征,约束复杂的曲线在斯坦域,和代数工具的发展,以方便计算微妙的不变量的结,缠结,和3-流形定义的拉格朗日弗洛尔同调和非阿贝尔规范理论。 该项目跨越拓扑学,分析,代数和组合学之间的界限,并使用同调代数,规范理论,纽结理论,接触几何和辛流形中的伪全纯曲线理论的技术。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satellites of infinite rank in the smooth concordance group
平滑索引组中无限等级的卫星
- DOI:10.1007/s00222-020-01026-w
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Hedden, Matthew;Pinzón-Caicedo, Juanita
- 通讯作者:Pinzón-Caicedo, Juanita
Knot Theory and Complex Curves
结理论和复杂曲线
- DOI:10.1090/noti2069
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hedden, Matthew
- 通讯作者:Hedden, Matthew
Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot
无法通过结上的 0 手术获得的不可约 3 流形
- DOI:10.1090/tran/7786
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Hedden, Matthew;Kim, Min Hoon;Mark, Thomas E.;Park, Kyungbae
- 通讯作者:Park, Kyungbae
Floer Homology and Fractional Dehn Twists
- DOI:10.1016/j.aim.2017.11.008
- 发表时间:2015-01
- 期刊:
- 影响因子:0
- 作者:M. Hedden;Thomas E. Mark
- 通讯作者:M. Hedden;Thomas E. Mark
Knot Floer homology and relative adjunction inequalities
Knot Floer 同源性和相对附加不等式
- DOI:10.1007/s00029-022-00810-1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hedden, Matthew;Raoux, Katherine
- 通讯作者:Raoux, Katherine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hedden其他文献
Some remarks on cabling, contact structures, and complex curves
关于布线、接触结构和复杂曲线的一些评论
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Matthew Hedden - 通讯作者:
Matthew Hedden
Matthew Hedden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Hedden', 18)}}的其他基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Topology and Geometry at the Interface of Dimensions 3 and 4
3 维和 4 维交界处的拓扑和几何
- 批准号:
2104664 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
The 2017 Graduate Student Topology and Geometry Conference
2017年研究生拓扑与几何会议
- 批准号:
1715902 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Floer Homology and Low-Dimensional Topology
职业:Floer 同调和低维拓扑
- 批准号:
1150872 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
- 批准号:
0906258 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
- 批准号:
0503335 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Fellowship Award
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Structures in Khovanov-Rozansky homology
Khovanov-Rozansky 同源结构
- 批准号:
2302305 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
The role of reticulon homology domain (RHD) protein and related family members in the sarco(endo)plasmic formation and regulation in the cardiac myocyte
网织同源结构域(RHD)蛋白及相关家族成员在心肌细胞肌(内)质形成和调节中的作用
- 批准号:
488705 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Operating Grants
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
- 批准号:
22KJ0912 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
- 批准号:
2303823 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Research Initiation Award: Toward Understanding Persistent Homology in Topological Data Analysis
研究启动奖:理解拓扑数据分析中的持久同源性
- 批准号:
2300360 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CDS&E-MSS: Topological Learning with Multiparameter Persistent Homology
CDS
- 批准号:
2324353 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant