Topology and Geometry at the Interface of Dimensions 3 and 4
3 维和 4 维交界处的拓扑和几何
基本信息
- 批准号:2104664
- 负责人:
- 金额:$ 43.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding 4-dimensional shapes called smooth 4-manifolds is a fundamental challenge in the mathematical fields of geometry and topology and is intimately related to theoretical physics through the framework of gauge theory. Surprising results from the 20th century indicate that classification of 4-manifolds is qualitatively much different, and more difficult, than corresponding questions in both higher and lower dimensions. A fruitful approach to studying 4-manifolds is to cut them into simpler pieces along 3-dimensional manifolds, so that effective tools and techniques available from the comparatively simpler study of 3-manifolds can be brought to bear on the 4-dimensional realm. This research project aims to deepen understanding of smooth 4-dimensional manifolds using this approach, employing tools called "Floer homologies," which stem from gauge theory and mathematical physics. The project will address questions that lie at the border of 3- and 4-dimensions. For instance, it will explore algebraic structures called homology cobordism groups, which allow 3-manifolds to be added and subtracted by considering certain 4-manifolds that interpolate between them like frames of a movie. The project will address several fundamental questions on these structures and refine them to account for symmetries of the spaces involved. The project will involve graduate students in the research.This project studies topological and geometric objects in low dimensions, with the aid of tools from gauge theory and symplectic geometry. Specific goals include the development of techniques for studying smooth equivariant homology cobordism groups, application of these techniques to long-standing questions on knot concordance, and characterization of knots that bound complex curves in Stein domains. The project will also create resources for students and researchers seeking to learn the tools employed in pursuit of these goals. Specific objectives in this direction include the completion and dissemination of an informal introductory text on Heegaard Floer homology. The project draws on methods from homological algebra, gauge theory, knot theory, contact geometry, and the theory of pseudo-holomorphic curves in symplectic manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解称为光滑四维流形的四维形状是几何和拓扑学数学领域的一个基本挑战,并且通过规范理论的框架与理论物理密切相关。 世纪令人惊讶的结果表明,4-流形的分类在性质上与高维和低维的相应问题有很大的不同,而且更困难。 研究四维流形的一个富有成效的方法是将它们沿着沿着三维流形切割成更简单的片段,这样,从相对简单的三维流形研究中获得的有效工具和技术可以应用于四维领域。 该研究项目旨在使用这种方法加深对光滑四维流形的理解,使用称为“Floer同调”的工具,该工具源于规范理论和数学物理。 该项目将解决位于三维和四维边界的问题。 例如,它将探索称为同调配边群的代数结构,它允许通过考虑某些像电影帧一样在它们之间插值的4-流形来添加和减去3-流形。 该项目将解决这些结构的几个基本问题,并完善它们,以解释所涉及的空间的对称性。 本计画将邀请研究生参与研究,利用规范理论与辛几何的工具,研究低维的拓扑与几何物体。具体目标包括发展技术研究顺利等变同源配边组,这些技术的应用长期存在的问题结一致性,并表征结,约束复杂的曲线在斯坦域。 该项目还将为寻求学习实现这些目标所采用的工具的学生和研究人员创造资源。 在这方面的具体目标包括完成和传播一个非正式的介绍性文本Heegaard Floer同源性。 该项目借鉴了同调代数、规范理论、纽结理论、接触几何和辛流形中的伪全纯曲线理论的方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On naturality of the Ozsváth–Szabó contactinvariant
论 OzsváthâSzabó 接触不变量的自然性
- DOI:10.2140/obs.2022.5.123
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hedden, Matthew;Tovstopyat-Nelip, Lev
- 通讯作者:Tovstopyat-Nelip, Lev
Knot Floer homology and relative adjunction inequalities
Knot Floer 同源性和相对附加不等式
- DOI:10.1007/s00029-022-00810-1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hedden, Matthew;Raoux, Katherine
- 通讯作者:Raoux, Katherine
Corks, involutions, and Heegaard Floer homology
软木塞、对合和 Heegaard Floer 同源性
- DOI:10.4171/jems/1239
- 发表时间:2023
- 期刊:
- 影响因子:2.6
- 作者:Dai, Irving;Hedden, Matthew;Mallick, Abhishek
- 通讯作者:Mallick, Abhishek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Hedden其他文献
Some remarks on cabling, contact structures, and complex curves
关于布线、接触结构和复杂曲线的一些评论
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Matthew Hedden - 通讯作者:
Matthew Hedden
Matthew Hedden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Hedden', 18)}}的其他基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 43.64万 - 项目类别:
Continuing Grant
The 2017 Graduate Student Topology and Geometry Conference
2017年研究生拓扑与几何会议
- 批准号:
1715902 - 财政年份:2017
- 资助金额:
$ 43.64万 - 项目类别:
Standard Grant
Floer Homology, Concordance, and Complex Curves
Floer 同源性、一致性和复杂曲线
- 批准号:
1709016 - 财政年份:2017
- 资助金额:
$ 43.64万 - 项目类别:
Continuing Grant
CAREER: Floer Homology and Low-Dimensional Topology
职业:Floer 同调和低维拓扑
- 批准号:
1150872 - 财政年份:2012
- 资助金额:
$ 43.64万 - 项目类别:
Continuing Grant
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
- 批准号:
0906258 - 财政年份:2009
- 资助金额:
$ 43.64万 - 项目类别:
Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
- 批准号:
0503335 - 财政年份:2005
- 资助金额:
$ 43.64万 - 项目类别:
Fellowship Award
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The research project lies at the interface of mathematical analysis and geometry. I
该研究项目位于数学分析和几何的交叉点。
- 批准号:
2876004 - 财政年份:2022
- 资助金额:
$ 43.64万 - 项目类别:
Studentship
Geometric Representation Theory: Interface of Algebra, Geometry and Topology.
几何表示理论:代数、几何和拓扑的接口。
- 批准号:
2596547 - 财政年份:2021
- 资助金额:
$ 43.64万 - 项目类别:
Studentship
EPSRC Centre for Doctoral Training in Geometry and Number Theory at the Interface: London School of Geometry and Number Theory
EPSRC 几何与数论博士培训中心:伦敦几何与数论学院
- 批准号:
EP/S021590/1 - 财政年份:2019
- 资助金额:
$ 43.64万 - 项目类别:
Training Grant
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
- 批准号:
1904332 - 财政年份:2019
- 资助金额:
$ 43.64万 - 项目类别:
Standard Grant
Controlling Adhesion Between Stiff Surfaces by Tailoring Interface Geometry
通过定制界面几何形状控制刚性表面之间的粘附力
- 批准号:
1761726 - 财政年份:2018
- 资助金额:
$ 43.64万 - 项目类别:
Standard Grant
A Symposium on Challenges at the Interface of String Phenomenology and Geometry
弦现象学与几何学接口挑战研讨会
- 批准号:
1733639 - 财政年份:2017
- 资助金额:
$ 43.64万 - 项目类别:
Standard Grant
DFG-RSF: Geometry and representation theory at the interface of Lie algebras and quivers
DFG-RSF:李代数和箭袋接口的几何和表示论
- 批准号:
308831127 - 财政年份:2016
- 资助金额:
$ 43.64万 - 项目类别:
Research Grants
Questions at the Interface of Probability and Geometry
概率与几何的交叉问题
- 批准号:
1612979 - 财政年份:2016
- 资助金额:
$ 43.64万 - 项目类别:
Continuing Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
- 批准号:
1603526 - 财政年份:2016
- 资助金额:
$ 43.64万 - 项目类别:
Continuing Grant
EPSRC Centre for Doctoral Training in Geometry and Number Theory at the Interface
EPSRC 接口几何与数论博士培训中心
- 批准号:
EP/L015234/1 - 财政年份:2014
- 资助金额:
$ 43.64万 - 项目类别:
Training Grant