CAREER: Geometric Applications of Gauge Theory

职业:规范理论的几何应用

基本信息

  • 批准号:
    1151693
  • 负责人:
  • 金额:
    $ 41.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-1151693Principal Investigator: Andrew Neitzke The PI's research is focused on the interface between physics and geometry. In a long-running collaboration with Davide Gaiotto and Greg Moore, he has studied mathematical applications of N=2 supersymmetric quantum field theory. This work has recently led to quite unexpected connections between physics and mathematical subjects such as enumerative geometry, hyperkahler geometry, and cluster algebras, and hence also to purely mathematical connections between these subjects. The proposed research builds on and extends this recent work in several directions. First, in continuing collaboration with Gaiotto and Moore, the PI will investigate new examples of generalized Donaldson-Thomas invariants, which "count" certain networks of geodesic trajectories on Riemann surfaces. This counting problem corresponds to determining the numbers of stable particles in certain physical theories. Also in collaboration with Gaiotto and Moore, the PI will continue development of a new method for constructing hyperkahler metrics on total spaces of integrable systems. In this new method the generalized Donaldson-Thomas invariants play a key role; the eventual goal is to produce asymptotic or convergent series representations for K3 metrics. Finally, in solo work, the PI will explore new mathematical structures which appear when the N=2 supersymmetric field theory is studied taking spacetime to be Taub-NUT space. This construction is expected to lead to new insights into the science of nonabelian theta functions. The PI will also produce a library of video clips, explaining concepts from physics for mathematicians at a variety of levels (from undergraduate level to other researchers). These clips will be freely available over the Web. In addition the PI will continue his active program of teaching, expository writing and talks, aimed at disseminating his methods and results more broadly.The PI studies geometric problems using tools imported from particle physics. Recently, he and his collaborators have devised a new scheme for solving the "field equation" which governs the curvature of spacetime. This equation, first written down by Einstein, is notoriously intractable. In particular, it is known that this equation has a large family of solutions describing a closed four-dimensional universe (so-called "K3 metrics"), but nobody has ever been able to write down actual formulas representing these solutions. The PI and collaborators have found a surprising connection between Einstein's equation and particle physics, which relates the problem of finding K3 metrics (and other similar solutions) to the problem of understanding how subatomic particles can decay. This connection has led to insight into both problems, which the PI and collaborators are now actively developing. The PI will also produce a library of video clips, explaining concepts from physics for mathematicians at a variety of levels (from undergraduate level to other researchers). These clips will be freely available over the Web.
摘要奖:DMS-1151693首席研究员:安德鲁·奈茨克国际和平研究所的研究重点是物理和几何之间的界面。在与Davide Gaiotto和Greg Moore的长期合作中,他研究了N=2超对称量子场论的数学应用。这项工作最近导致了物理和数学学科之间相当意想不到的联系,如计数几何、超卡勒几何和簇代数,因此也导致了这些学科之间的纯粹数学联系。这项拟议的研究建立在最近这项工作的基础上,并在几个方向上进行了扩展。首先,在与Gaiotto和Moore的继续合作中,PI将研究广义Donaldson-Thomas不变量的新例子,该不变量可以对黎曼曲面上的测地线轨迹的某些网络进行计数。这个计数问题对应于在某些物理理论中确定稳定粒子的数量。此外,PI还将与Gaiotto和Moore合作,继续发展一种在可积系统的全空间上构造Hyperkahler度量的新方法。在这种新方法中,广义Donaldson-Thomas不变量起着关键作用;最终目标是产生K3度量的渐近或收敛的级数表示。最后,在个人工作中,PI将探索在时空为Taub-NUT空间的情况下研究N=2超对称场论时出现的新的数学结构。这一构造有望带来对非阿贝尔西塔函数科学的新见解。PI还将制作一个视频剪辑库,为不同级别的数学家(从本科生到其他研究人员)解释物理概念。这些视频片段将在网上免费提供。此外,PI将继续他的教学、说明文写作和演讲的积极计划,旨在更广泛地传播他的方法和结果。PI使用从粒子物理引进的工具来研究几何问题。最近,他和他的合作者设计了一种新的方案来求解支配时空曲率的“场方程”。这个最先由爱因斯坦写下的方程式是出了名的难解。特别是,众所周知,这个方程有一大族解描述了一个封闭的四维宇宙(所谓的“K3度规”),但从来没有人能够写下代表这些解的实际公式。PI及其合作者在爱因斯坦方程和粒子物理学之间发现了令人惊讶的联系,这将寻找K3度规(和其他类似的解决方案)的问题与理解亚原子粒子如何衰变的问题联系在一起。这种联系导致了对这两个问题的洞察,国际和平组织和合作者现在正在积极开发这两个问题。PI还将制作一个视频剪辑库,为不同级别的数学家(从本科生到其他研究人员)解释物理概念。这些视频片段将在网上免费提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Neitzke其他文献

On the BPS Spectrum of the rank-1 Minahan-Nemeschansky theories
1 阶 Minahan-Nemeschansky 理论的 BPS 谱
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. Distler;M. Martone;Andrew Neitzke
  • 通讯作者:
    Andrew Neitzke
M392C NOTES: APPLICATIONS OF QUANTUM FIELD THEORY TO GEOMETRY
M392C 笔记:量子场论在几何中的应用
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Debray;Andrew Neitzke;I. live
  • 通讯作者:
    I. live
q-nonabelianization for line defects
线缺陷的 q-非阿贝尔化
Topological strings and their physical applications
拓扑弦及其物理应用
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Neitzke;C. Vafa
  • 通讯作者:
    C. Vafa
Spectral Networks and Snakes
光谱网络和蛇

Andrew Neitzke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Neitzke', 18)}}的其他基金

Field Theory, Link Invariants, and Higher Moduli
场论、链接不变量和更高的模量
  • 批准号:
    2005312
  • 财政年份:
    2020
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
Between Topology and Quantum Field Theory
拓扑学与量子场论之间
  • 批准号:
    1849951
  • 财政年份:
    2019
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
Supersymmetric Gauge Theory, Donaldson-Thomas Invariants and Hyperkahler Geometry
超对称规范理论、Donaldson-Thomas 不变量和 Hyperkahler 几何
  • 批准号:
    1006046
  • 财政年份:
    2010
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: CIF: Theory and Applications of Geometric Deep Learning
职业:CIF:几何深度学习的理论与应用
  • 批准号:
    1845360
  • 财政年份:
    2019
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: Geometric Shape Deformation with Applications in Medicine
职业:几何形状变形及其在医学中的应用
  • 批准号:
    1622360
  • 财政年份:
    2016
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: Geometric Shape Deformation with Applications in Medicine
职业:几何形状变形及其在医学中的应用
  • 批准号:
    1350330
  • 财政年份:
    2014
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: New Paradigms in Geometric Analysis of Data Sets and their Applications
职业:数据集几何分析的新范式及其应用
  • 批准号:
    0956072
  • 财政年份:
    2010
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    1010687
  • 财政年份:
    2009
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    0747659
  • 财政年份:
    2008
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: Geometric and Topological Methods in Shape Analysis, with Applications in Molecular Biology
职业:形状分析中的几何和拓扑方法及其在分子生物学中的应用
  • 批准号:
    0747082
  • 财政年份:
    2008
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Standard Grant
CAREER: Core-Sets for Geometric Optimization and their Applications.
职业:几何优化的核心集及其应用。
  • 批准号:
    0643593
  • 财政年份:
    2007
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
CAREER: Physics-Based Computer Aided Geometric Design: Theory and Applications
职业:基于物理的计算机辅助几何设计:理论与应用
  • 批准号:
    9702103
  • 财政年份:
    1997
  • 资助金额:
    $ 41.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了