Field Theory, Link Invariants, and Higher Moduli
场论、链接不变量和更高的模量
基本信息
- 批准号:2005312
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI studies problems of geometry and topology using methods imported from particle physics. This project is divided into two major parts. The first part concerns "knot invariants": these are ways of determining, given two pictures of knotted loops of string, whether it is possible to turn one into the other without cutting. The PI and his collaborators are developing a new method for calculating knot invariants using new tools from particle physics developed over the last decade. The second part concerns new ways of deforming quantum theories, which the PI expects to have many applications in mathematics, including to the theory of differential equations. The results of this work will be disseminated broadly both in the mathematics and high-energy physics communities, helping to bring these two areas closer together. The project will also contribute to the training of graduate students in both fields.The first part of the project concerns "q-nonabelianization". This is a new scheme for defining invariants of links in R^3 or more generally in 3-manifolds. It is a q-deformation of the method of "nonabelianization" using spectral networks, introduced earlier by the PI and collaborators for studying moduli spaces of flat GL(N)-connections. The PI and collaborators aim to construct q-nonabelianization on general 3-manifolds and for general values of N, beginning with the GL(2) case; in that case q-nonabelianization is closely related to constructions which have been introduced earlier by Bonahon-Wong. The second part of the project concerns a new approach to higher Teichmuller theory. The first key idea is to identify the "higher Teichmuller space" (also known as "Hitchin component") with a space of marginal and irrelevant deformations of a supersymmetric quantum field theory of class S; the second key idea is to develop the corresponding picture for the moduli spaces of marginal and irrelevant deformations of surface defects in the class S theory, with applications to the theory of Higgs bundles over Riemann surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI使用从粒子物理学引入的方法研究几何和拓扑问题。本项目分为两大部分。第一部分涉及“绳结不变量”:给定两张绳结环的图片,这些方法决定是否有可能在不剪断的情况下将其中一个变成另一个。PI和他的合作者正在开发一种计算结不变量的新方法,该方法使用了过去十年中粒子物理学中发展起来的新工具。第二部分涉及变形量子理论的新方法,PI希望在数学中有许多应用,包括微分方程理论。这项工作的结果将在数学和高能物理界广泛传播,有助于将这两个领域更紧密地联系在一起。该项目还将有助于培训这两个领域的研究生。该项目的第一部分涉及“q-非abel化”。这是定义R^3或更一般的3-流形中连杆不变量的一种新格式。它是使用谱网络的“非阿贝尔化”方法的q-变形,该方法是由PI和合作者早先引入的用于研究平坦GL(N)-连接的模空间。PI和合作者的目标是在一般3-流形和一般N值上构造q-非abel化,从GL(2)情况开始;在这种情况下,q-非贝尔化与Bonahon-Wong早先引入的构造密切相关。该项目的第二部分涉及对高等Teichmuller理论的新方法。第一个关键思想是用S类超对称量子场论的边缘和不相关变形空间来识别“更高的Teichmuller空间”(也称为“Hitchin分量”);第二个关键思想是为S类理论中表面缺陷的边缘和无关变形的模空间开发相应的图像,并将其应用于黎曼表面上的希格斯束理论。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact WKB methods in SU(2) Nf = 1
- DOI:10.1007/jhep01(2022)046
- 发表时间:2021-05
- 期刊:
- 影响因子:5.4
- 作者:A. Grassi;Qianyu Hao;Andrew Neitzke
- 通讯作者:A. Grassi;Qianyu Hao;Andrew Neitzke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Neitzke其他文献
On the BPS Spectrum of the rank-1 Minahan-Nemeschansky theories
1 阶 Minahan-Nemeschansky 理论的 BPS 谱
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.4
- 作者:
J. Distler;M. Martone;Andrew Neitzke - 通讯作者:
Andrew Neitzke
M392C NOTES: APPLICATIONS OF QUANTUM FIELD THEORY TO GEOMETRY
M392C 笔记:量子场论在几何中的应用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Debray;Andrew Neitzke;I. live - 通讯作者:
I. live
q-nonabelianization for line defects
线缺陷的 q-非阿贝尔化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.4
- 作者:
Andrew Neitzke;Fei Yan - 通讯作者:
Fei Yan
Topological strings and their physical applications
拓扑弦及其物理应用
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Andrew Neitzke;C. Vafa - 通讯作者:
C. Vafa
Spectral Networks and Snakes
光谱网络和蛇
- DOI:
10.1007/s00023-013-0238-8 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
D. Gaiotto;G. Moore;Andrew Neitzke - 通讯作者:
Andrew Neitzke
Andrew Neitzke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Neitzke', 18)}}的其他基金
Between Topology and Quantum Field Theory
拓扑学与量子场论之间
- 批准号:
1849951 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
CAREER: Geometric Applications of Gauge Theory
职业:规范理论的几何应用
- 批准号:
1151693 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Continuing Grant
Supersymmetric Gauge Theory, Donaldson-Thomas Invariants and Hyperkahler Geometry
超对称规范理论、Donaldson-Thomas 不变量和 Hyperkahler 几何
- 批准号:
1006046 - 财政年份:2010
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of a traffic accident risk assessment method based on Link & Place theory
基于Link的交通事故风险评估方法开发
- 批准号:
21K14269 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Categorical Diagonalization, Representation Theory, and Link Homology
范畴对角化、表示论和链接同调
- 批准号:
2034516 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Categorical Diagonalization, Representation Theory, and Link Homology
范畴对角化、表示论和链接同调
- 批准号:
1702274 - 财政年份:2017
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Construction of theory for a link between microscopic and macroscopic models related to biological phenomena
与生物现象相关的微观和宏观模型之间联系的理论构建
- 批准号:
16KT0135 - 财政年份:2016
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative study and theory development of organizational adaptation process toward environmental change in the view of micro-macro link
微观与宏观联系视角下组织环境变化适应过程的定量研究与理论发展
- 批准号:
25380458 - 财政年份:2013
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Car-Following Theory Including Perception-Behavior Link of Lead-Vehicle Driver and a Speed Control Device Design
包括前车驾驶员感知行为链接的跟车理论和速度控制装置设计
- 批准号:
25420548 - 财政年份:2013
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
*The Effect of Introduction of Realistic Teacher Education which enables to link Theory and Practice
*引进现实教师教育理论与实践相结合的效果
- 批准号:
25381048 - 财政年份:2013
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on quandle theory to classifying links up to link-homotopy
链路分类至链路同伦的Quandle理论研究
- 批准号:
23840014 - 财政年份:2011
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quandle theory and surface-link invariants
Quandle 理论和表面链接不变量
- 批准号:
23840040 - 财政年份:2011
- 资助金额:
$ 41.2万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Link Homology, Categorification and extended Topological Quantum Field Theory
连接同调、分类和扩展拓扑量子场论
- 批准号:
0906401 - 财政年份:2009
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant














{{item.name}}会员




