A high precision method to estimate effective connectivity networks at the group and individual levels
一种估计群体和个人层面有效连接网络的高精度方法
基本信息
- 批准号:1157220
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The frontiers of cognitive brain imaging are shifting from examinations of isolated individual brain regions to examinations of interactions between multiple regions in distributed brain networks. Empirical evidence consistently shows that identification of the structure and dynamics of brain networks is the key to understanding cognitive information processing as functions of development, aging, and clinical conditions, among other factors. With funding from the National Science Foundation, Dr. Peter C. Molenaar and his colleagues, Drs. Frank Hillary, Ping Li, and Michael Rovine of the Pennsylvania State University University Park are developing new methods, known as "effective connectivity mapping," to identify how different brain regions causally influence each other's activity. Currently available methods have several known shortcomings, and the proposed project is addressing these shortcomings by developing new methods to explicitly model both contemporaneous and time-lagged relationships among the activities of brain regions. The new method will be highly important for functional brain imaging research. It is designed to efficiently accommodate individual differences in connectivity maps and to carry out automatic data-driven search for the optimal network solutions. The researchers are giving special emphasis to integrating the methodology with dimension-reduction techniques in order to identify brain regions of interest and to application of new estimation techniques allowing for arbitrarily time-varying strengths of effective connections among brain regions. The new methodology is based on bilinear vector-autoregressive models, with or without external input, as well as extension of this model into stochastic state-space models. Application of brain imaging is widespread and increasingly focused on understanding the ways in which activities of brain regions are integrated into interconnected networks. Individual humans differ substantially in brain structure and function, and connections among their brain regions can vary across time due to multiple factors. Therefore, robust statistical methods are required to reliably identify the networks of brain regions of interest. This project is aimed at accomplishing this goal by means of the application of innovative statistical methodology that is extensively validated with simulated and empirical data and implemented in software tools that can be applied in both theory-driven and data-driven ways. The investigators are validating the methodology with large-scale simulation studies and with applications to existing data sets. The new analysis tools will be implemented in commonly used computational platforms. For the benefit of the greater scientific community, the methods will also be made publicly available through the development of user-friendly interfaces, courseware, and consultation.
认知脑成像的前沿正在从孤立的单个脑区域的检查转移到分布式脑网络中多个区域之间的相互作用的检查。经验证据一致表明,识别大脑网络的结构和动力学是理解认知信息处理作为发育,衰老和临床条件等因素的关键。在美国国家科学基金会的资助下,彼得·C. Molenaar和他的同事,宾夕法尼亚州立大学大学公园的Frank Hillary、Ping Li和Michael Rovine博士正在开发新的方法,称为“有效连接映射”,以确定不同的大脑区域如何因果地影响彼此的活动。目前可用的方法有几个已知的缺点,拟议的项目正在解决这些缺点,开发新的方法来明确建模大脑区域活动之间的同期和时滞关系。这一新方法对脑功能成像研究具有重要意义。它旨在有效地适应连接图中的个体差异,并自动进行数据驱动的搜索,以获得最佳网络解决方案。研究人员特别强调将该方法与降维技术相结合,以确定感兴趣的大脑区域,并应用新的估计技术,允许大脑区域之间有效连接的任意时变强度。新的方法是基于双线性向量自回归模型,有或没有外部输入,以及扩展到随机状态空间模型的这个模型。脑成像的应用非常广泛,并且越来越多地集中在了解大脑区域的活动整合到互连网络中的方式上。人类个体在大脑结构和功能上存在很大差异,由于多种因素,他们的大脑区域之间的连接可能会随着时间的推移而变化。因此,需要稳健的统计方法来可靠地识别感兴趣的大脑区域的网络。该项目旨在通过应用创新的统计方法来实现这一目标,这种方法经过模拟和经验数据的广泛验证,并在可以以理论驱动和数据驱动的方式应用的软件工具中实施。调查人员正在通过大规模模拟研究和对现有数据集的应用来验证这一方法。新的分析工具将在常用的计算平台上实现。为了广大科学界的利益,还将通过开发用户友好的界面、课件和协商,向公众提供这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Molenaar其他文献
The effects of both noradrenaline and CGP12177, mediated through human β1-adrenoceptors, are reduced by PDE3 in human atrium but PDE4 in CHO cells
- DOI:
10.1007/s00210-007-0140-3 - 发表时间:
2007-02-21 - 期刊:
- 影响因子:3.100
- 作者:
Alberto Kaumann;Annalese B. T. Semmler;Peter Molenaar - 通讯作者:
Peter Molenaar
A Remote Ischaemic Preconditioning Protocol Does not Alter the Function of Human Right Atrium <em>In Vitro</em>
- DOI:
10.1016/j.hlc.2011.08.066 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Yasmin Whately;Peter Molenaar;Katherine Gillette;Bronwyn Pearse;John Fraser - 通讯作者:
John Fraser
Potential of β2AR for added benefit in treating heart failure through a better understanding of signaling
通过更好地理解信号传导,β2AR 在治疗心力衰竭方面具有额外益处的潜力
- DOI:
10.1016/j.cophys.2023.100719 - 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
K. Walweel;E. Cheesman;Peter Molenaar - 通讯作者:
Peter Molenaar
Analysis of auto-antibodies in schizophrenia
- DOI:
10.1016/j.jneuroim.2014.08.270 - 发表时间:
2014-10-15 - 期刊:
- 影响因子:
- 作者:
Carolin Hoffmann;Matthew J. Lindemann;Vincent C. Ramsperger;Lakshmanan Suresh;Jo Stevens;Mario Losen;Peter Molenaar;Marc H. De Baets;Marc De Hert;Jim Van Os;Bart Bp Rutten;Pilar Martinez-martinez - 通讯作者:
Pilar Martinez-martinez
Analysis of pathogenic autoantibodies against the N-methyl-<span class="small-caps">d</span>-aspartate glutamate receptor in schizophrenia
- DOI:
10.1016/j.jneuroim.2014.08.271 - 发表时间:
2014-10-15 - 期刊:
- 影响因子:
- 作者:
Carolin Hoffmann;Gisela Nogales-gadea;Jo Stevens;Mario Losen;Andrei Szoke;Marion Leboyer;Marc De Hert;Nico J.M. Van Beveren;Peter Molenaar;Wim A. Buurman;Marc H. De Baets;Bart B.F. Rutten;Jim Van Os;Pilar Martinez-Martinez - 通讯作者:
Pilar Martinez-Martinez
Peter Molenaar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Molenaar', 18)}}的其他基金
Recursive Estimation of Time-Varying Parameters in Dynamic Factor Models for Nonstationary Psychological TIme Series
非平稳心理时间序列动态因子模型中时变参数的递归估计
- 批准号:
0852147 - 财政年份:2009
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
相似国自然基金
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
- 批准号:82372120
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
偏线性分位数样本截取和选择模型的估计与应用—基于非参数筛分法(Sieve Method)
- 批准号:72273091
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
- 批准号:52006188
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
新随机占优理论及其在社会福利研究中的应用
- 批准号:71971204
- 批准年份:2019
- 资助金额:48.0 万元
- 项目类别:面上项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
- 批准号:11172015
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
磁力显微镜对纳米尺度磁畴结构的定量研究
- 批准号:51071088
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
典型团簇结构模式随尺度变化的理论计算研究
- 批准号:21043001
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
TB方法在有机和生物大分子体系计算研究中的应用
- 批准号:20773047
- 批准年份:2007
- 资助金额:26.0 万元
- 项目类别:面上项目
Fisher矢量机
- 批准号:60602064
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于全局变量的新型电磁场数值计算方法-有限公式方法及其应用研究
- 批准号:50577016
- 批准年份:2005
- 资助金额:9.0 万元
- 项目类别:面上项目
相似海外基金
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
- 批准号:
10905154 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10349828 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
Computational Imaging of Renal Structures for Diagnosing DiabeticNephropathy
用于诊断糖尿病肾病的肾脏结构计算成像
- 批准号:
10665182 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
South Texas Alzheimer's Disease Center Genetics and Multiomics Core
南德克萨斯阿尔茨海默病中心遗传学和多组学核心
- 批准号:
10472672 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10185327 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
South Texas Alzheimer's Disease Center Genetics and Multiomics Core
南德克萨斯阿尔茨海默病中心遗传学和多组学核心
- 批准号:
10270731 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Predicting Adolescent Depression Using Machine Learning
使用机器学习预测青少年抑郁症
- 批准号:
10322140 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
South Texas Alzheimer's Disease Center Genetics and Multiomics Core
南德克萨斯阿尔茨海默病中心遗传学和多组学核心
- 批准号:
10662350 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别: