Rationally Connected Varieties
合理关联的品种
基本信息
- 批准号:1159175
- 负责人:
- 金额:$ 8.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-02 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main aim of this proposal is to investigate a few questions in birational geometry. The first parts intends to study rationally connected varieties, which are the simplest algebraic varieties from many points of view. For non-proper varieties, there are various definitions of rational connectedness.The proposer will study their relations. He will also continue his study on the arithmetic property of rationally connected varieties. The other parts focus on the boundedness type questions of varieties or pairs. Especially, when the pair is of log general type, the PI investigator is trying to establish the uniform properties of their volumes.Algebraic varieties are roughly speaking the figures described by the solutions of polynomials. Algebraic geometry is a subject which aims to classify all algebraic varieties. In the birational sense, algebraic varieties are built up by some specific types of varieties. Rationally connected varieties and general type varieties are such fundamental building blocks. To understand them will largely improve our understanding of all algebraic varieties.
本文的主要目的是研究双有理几何中的几个问题。第一部分研究了有理连通簇,从多个角度来看,有理连通簇是最简单的代数簇。对于非真簇,有理连通性有各种不同的定义,提出者将研究它们之间的关系。他还将继续他的研究算术财产的合理连接品种。另一部分主要讨论簇或对的有界性问题。特别是,当对是日志一般类型,PI调查员试图建立统一的性质,他们的体积。代数品种粗略地说,由多项式的解决方案所描述的数字。代数几何是一门旨在对所有代数簇进行分类的学科。在双有理意义下,代数簇是由某些特定类型的簇构成的。理性连接的变种和一般类型变种就是这样的基本构建块。理解它们将在很大程度上提高我们对所有代数簇的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenyang Xu其他文献
Recent Advances in DNA Repair Pathway and Its Application in Personalized Care of Metastatic Castration-Resistant Prostate Cancer (mCRPC).
DNA 修复途径的最新进展及其在转移性去势抵抗性前列腺癌 (mCRPC) 个体化护理中的应用。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chenyang Xu;Shanhua Mao;Haowen Jiang - 通讯作者:
Haowen Jiang
Rational points of rationally simply connected varieties over global function fields
全局函数域上有理单连通簇的有理点
- DOI:
10.5802/ahl.65 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
J. Starr;Chenyang Xu - 通讯作者:
Chenyang Xu
Multi‑index base‑stock policy for inventory systems with multiple capacitated suppliers
具有多个供应商的库存系统的多指数基础库存策略
- DOI:
10.1007/s00291-021-00658-5 - 发表时间:
2021 - 期刊:
- 影响因子:2.7
- 作者:
Chaolin Yang;Diyuan Huang;Chenyang Xu - 通讯作者:
Chenyang Xu
K-stability of Fano varieties: an algebro-geometric approach
- DOI:
10.4171/emss/51 - 发表时间:
2020-11 - 期刊:
- 影响因子:2.3
- 作者:
Chenyang Xu - 通讯作者:
Chenyang Xu
A summary of geometric level-set analogues for a general class of parametric active contour and surface models
一般类参数化活动轮廓和曲面模型的几何水平集类似物总结
- DOI:
10.1109/vlsm.2001.938888 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Chenyang Xu;A. Yezzi;Jerry L Prince - 通讯作者:
Jerry L Prince
Chenyang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenyang Xu', 18)}}的其他基金
K-Stability in Higher Dimensional Geometry
高维几何中的 K 稳定性
- 批准号:
2201349 - 财政年份:2022
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
2139613 - 财政年份:2021
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant
K-stability and Higher Dimensional Geometry
K 稳定性和高维几何
- 批准号:
2153115 - 财政年份:2021
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952531 - 财政年份:2020
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant
K-stability and Higher Dimensional Geometry
K 稳定性和高维几何
- 批准号:
1901849 - 财政年份:2019
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant
相似海外基金
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
- 批准号:
21H00976 - 财政年份:2021
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Semi-orthogonal decomposition of derived categories of rationally connected varieties and vector bundles
有理连通簇和向量丛的派生范畴的半正交分解
- 批准号:
15K04810 - 财政年份:2015
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic of Rationally Simply Connected Varieties
有理单连通簇的算术
- 批准号:
1405709 - 财政年份:2014
- 资助金额:
$ 8.03万 - 项目类别:
Standard Grant
Research on rationally connected varieties and vector bundles on them from projective-geometric and categorical points of view
从射影几何和阶分类的角度研究有理连通簇及其向量丛
- 批准号:
22540043 - 财政年份:2010
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Birational geometry of nonrational rationally connected varieties
非有理有理关联簇的双有理几何
- 批准号:
21840032 - 财政年份:2009
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research on rationally connected varieties
理性关联品种研究
- 批准号:
19540037 - 财政年份:2007
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Many-sided researches on rationally connected projective varieties-Fano varieties are unirational ?
有理关联射影簇的多方研究——法诺簇是非有理的?
- 批准号:
14340014 - 财政年份:2002
- 资助金额:
$ 8.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of Rationally Connected Varieties
有理连接品种的几何
- 批准号:
0200659 - 财政年份:2002
- 资助金额:
$ 8.03万 - 项目类别:
Continuing Grant