Rapid Identification of Pathogenic Bacteria Based on Long-range SERS Microarray Biosensors
基于长距离SERS微阵列生物传感器的病原菌快速鉴定
基本信息
- 批准号:1159609
- 负责人:
- 金额:$ 29.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Yu1159609The development of biosensors for the rapid identification of pathogenic bacteria with high sensitivity and specificity is highly desired for environmental monitoring, biomedical diagnostics, and homeland security. Current detection methods, such as bacteriologic culture, serological, and PCR tests, are either time consuming or require the use of high-end instruments and species-specific antibodies, greatly complicating their engineering transition to real world applications. Biosensors based on surface-enhanced Raman spectroscopy (SERS) for direct detection and discrimination of bacteria offers many advantages over the current detection methods such as being reagent-less, multiplexing and the potential for on-line and infield applications. However, conventional SERS is a near-field effect which severely limits the detection of bacteria.Intellectual Merit: In this work, the PI challenge the current pathogenic bacteria detection methods by proposing to develop a new biosensor platform based on long-rang SERS (LRSERS) for the sensitive detection and rapid identification of pathogenic bacteria. The LR-SERS concept is supported by the fundamental physics in that the surface plasmon resonance (SPR) can be extended to a long distance from the metal surface by the coupling of SPRs at both metal/dielectric interfaces of a metal thin film. This work is aimed to rationally design fundamentally new LR-SERS substrates using theoretical electromagnetic calculations and to develop a microarray biosensor based on the LR-SERS platform. Electromagnetic finite-difference time-domain (FDTD) calculations will be performed first in order to rationally design the plasmonic nanostructures with the strongest local electric field away from the metal surface to ~ 50 nm, the length covering bacterial cell walls. Subsequently, the LR-SERS substrates will be fabricated via electron beam lithography (EBL) for the detection of bacteria. While the LRSERS microarray biosensor developed in this project is targeted for rapid identification of anypathogenic bacteria, we will use the isolates of vibrio species for testing because the pathogenicmarine bacterium V. parahaemolyticus is the leading cause of seafood-borne bacterial illness in the word. The LR-SERS spectra of isolates of V. parahaemolyticus from different phylogenetic groups and sources (environment and clinical) will be collected and analyzed to determine the correlation of LR-SERS spectral characteristic peaks to the gene encoding outer membrane andcell wall proteins of pathogenic strains. A method for the quick identification of pathogenic V.parahaemolyticus from a mixture of bacteria strains will be established using LR-SERS barcode and principle component analysis (PCA). And finally, LR-SERS microarray biosensors will be integrated with a microfluidic system for the in-situ, sensitive, and high-throughput detection and identification of pathogenic bacteria.Broader Impact: The LR-SERS microarray biosensors developed in this project provide a new approach strategy that can lead to, for example, the development of biosensor networks deployed off-coast for health early warning systems. Results from this project will make significant impact on the related fields such as analytical chemistry, biomedicine, pharmacology, forensics, food safety, agriculture, bio-fuel research, environmental monitoring, and bio-defense.Graduate, undergraduate, and community college students will receive training and participate in this highly interdisciplinary research project, especially students from underrepresented groups such as female. The participation of international exchange students will promote the international collaborations. The knowledge gained from this work will be disseminated through the lectures the PI provides for the courses every year and via outreach programs established by the UW Center for Nanotechnology and the Seattle Pacific Science Center.
YU1159609生物传感器的开发用于快速鉴定具有高灵敏度和特异性的致病细菌,对于环境监测,生物医学诊断和国土安全性是高度的。当前的检测方法,例如细菌学培养,血清学和PCR测试,是耗时的,或者需要使用高端仪器和物种特异性抗体,从而使他们的工程过渡到现实世界的应用非常复杂。基于表面增强的拉曼光谱(SER)的生物传感器直接检测和歧视细菌的生物传感器比当前的检测方法具有许多优势,例如无试剂,多重型和在线和内场应用的潜力。然而,常规的SER是一种近场作用,严重限制了细菌的检测。 LR-sers概念得到了基本物理的支持,因为表面等离子体共振(SPR)可以通过在金属薄膜的两个金属/介电界面上的SPR耦合将SPR的耦合延长至金属表面。这项工作旨在使用理论电磁计算从根本上设计新的LR-SERS底物,并基于LR-SERS平台开发微阵列生物传感器。电磁有限差分时间域(FDTD)将首先进行计算,以便在合理地设计具有最强局部电场的等离激元纳米结构,从金属表面到〜50 nm,覆盖细菌细胞壁的长度。随后,将通过电子束光刻(EBL)制造LR-SERS底物以检测细菌。尽管该项目中开发的LRSERS微阵列生物传感器的目标是快速鉴定任何人病性细菌,但我们将使用颤音物种的分离株进行测试,因为致病性乳酸菌V. parahayalyticus是parahaeyticus的主要原因。将收集和分析来自不同系统发育基团和源(环境和临床)的darahayticus分离株的LR-sERS光谱,以确定LR-SERS光谱特征峰与编码编码致病菌株的外膜和细胞壁蛋白的基因的相关性。将使用LR-sers条形码和原理分析(PCA)快速鉴定从细菌菌株混合物中快速鉴定病原体V.parahayticus的方法。 And finally, LR-SERS microarray biosensors will be integrated with a microfluidic system for the in-situ, sensitive, and high-throughput detection and identification of pathogenic bacteria.Broader Impact: The LR-SERS microarray biosensors developed in this project provide a new approach strategy that can lead to, for example, the development of biosensor networks deployed off-coast for health early warning systems.该项目的结果将对相关领域产生重大影响,例如分析化学,生物医学,取证,食品安全,农业,农业,生物燃料研究,环境监测和生物防御。毕业生,本科生和社区大学生将接受这一高度跨学科研究的培训,并参与诸如女性较高的学生,尤其是女性的学生。国际交流学生的参与将促进国际合作。这项工作所获得的知识将通过PI每年为课程提供的演讲以及UW纳米技术中心和西雅图太平洋科学中心建立的外展计划来传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiuming Yu其他文献
Growth and sintering of Pd clusters on α-Al2O3(0001)
Pd团簇在α-Al2O3(0001)上的生长和烧结
- DOI:
10.1063/1.1849151 - 发表时间:
2005 - 期刊:
- 影响因子:4.4
- 作者:
S. Tait;L. T. Ngo;Qiuming Yu;S. Fain;C. Campbell - 通讯作者:
C. Campbell
The Fano resonance in quasi-3D gold plasmonic nanostructure arrays for surface-enhanced Raman scattering
用于表面增强拉曼散射的准 3D 金等离子体纳米结构阵列中的 Fano 共振
- DOI:
10.1117/12.930423 - 发表时间:
2012 - 期刊:
- 影响因子:2.2
- 作者:
Daqian Wang;Xinglong Yu;Qiuming Yu - 通讯作者:
Qiuming Yu
Parameter Self-Tuning PID Control for Greenhouse Climate Control Problem
温室气候控制问题的参数自整定PID控制
- DOI:
10.1109/access.2020.3030416 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yuanping Su;Qiuming Yu;Lu Zeng - 通讯作者:
Lu Zeng
Functional Optical Imaging-based Biosensors Characterize Zwitterionic Coatings on SiO2 for Cancer Biomarker Detection
基于功能光学成像的生物传感器表征 SiO2 上的两性离子涂层,用于癌症生物标志物检测
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Norman D Brault;Shaoyi Jiang;Qiuming Yu - 通讯作者:
Qiuming Yu
Molecular dynamics simulation of the surface reconstruction and strain relief in Si1-xGex/Si(100) heterostructures
Si1-xGex/Si(100)异质结构表面重构和应变消除的分子动力学模拟
- DOI:
10.1088/0965-0393/2/4/003 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Qiuming Yu;P. Clancy - 通讯作者:
P. Clancy
Qiuming Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiuming Yu', 18)}}的其他基金
NSF-GACR: An Optical Biosensing Platform for Simultaneous Detection and Quantification of Exosomes and Exosomal Cargo Biomarkers
NSF-GACR:用于同时检测和定量外泌体和外泌体货物生物标志物的光学生物传感平台
- 批准号:
2247222 - 财政年份:2023
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
Materials and Interface Engineering for Highly Efficient and Stable 2D/3D Tin Pseudohalide Perovskite Solar Cells
高效稳定的 2D/3D 锡赝卤化物钙钛矿太阳能电池的材料和界面工程
- 批准号:
2054942 - 财政年份:2021
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
Two-Dimensional Chiral Perovskites with Tunable Electronic Band Structure and Superior Charge Transport
具有可调谐电子能带结构和卓越电荷传输的二维手性钙钛矿
- 批准号:
2114350 - 财政年份:2021
- 资助金额:
$ 29.82万 - 项目类别:
Continuing Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
2051617 - 财政年份:2020
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
1661660 - 财政年份:2017
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
EAGER: Interface Engineering for Low-Temperature Process and Stable Organometal Perovskite Solar Cells
EAGER:低温工艺和稳定有机金属钙钛矿太阳能电池的界面工程
- 批准号:
1748101 - 财政年份:2017
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
EAGER: Plasmonic Wide Angle Light Concentrators for Bulk-Heterojunction Solar Cells
EAGER:用于体异质结太阳能电池的等离激元广角聚光器
- 批准号:
1346859 - 财政年份:2013
- 资助金额:
$ 29.82万 - 项目类别:
Standard Grant
相似国自然基金
基于生长轨迹的儿童性早熟风险因素早期识别与临床鉴别诊断的纵向数据预测模型研究
- 批准号:82373691
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
免扩增核酸定量检测技术研究及其在发热儿童细菌与病毒性感染快速鉴别中的应用
- 批准号:22304040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于血浆cfDNA甲基化的肺结节良恶性鉴别及早期肺癌SBRT预后预测的研究
- 批准号:82303577
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多中心脑影像的脑功能异常模式鉴别分析方法研究
- 批准号:62306327
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Anti-interneuron antibodies in rapid-onset pediatric OCD: clinical generalization and target identification
快速发作的儿科强迫症中的抗中间神经元抗体:临床概括和靶标识别
- 批准号:
10530955 - 财政年份:2022
- 资助金额:
$ 29.82万 - 项目类别:
NeoChip for specific and rapid identification of congenital CMV and neonatal HSV infections on minimal sample volume
NeoChip 用于以最少的样本量特异性快速识别先天性 CMV 和新生儿 HSV 感染
- 批准号:
10701864 - 财政年份:2022
- 资助金额:
$ 29.82万 - 项目类别:
Development of a Novel Whole Genome Sequencing-based Platform for Rapid Identification and Antimicrobial Profiling of Uropathogens
开发基于全基因组测序的新型平台,用于尿路病原体的快速识别和抗菌谱分析
- 批准号:
10382740 - 财政年份:2022
- 资助金额:
$ 29.82万 - 项目类别:
NeoChip for specific and rapid identification of congenital CMV and neonatal HSV infections on minimal sample volume
NeoChip 用于以最少的样本量特异性快速识别先天性 CMV 和新生儿 HSV 感染
- 批准号:
10539056 - 财政年份:2022
- 资助金额:
$ 29.82万 - 项目类别:
Direct detection and identification of antimicrobial resistance genes in bloodstream infections
血流感染中抗菌药物耐药基因的直接检测和鉴定
- 批准号:
10543944 - 财政年份:2022
- 资助金额:
$ 29.82万 - 项目类别: