EAGER: Plasmonic Wide Angle Light Concentrators for Bulk-Heterojunction Solar Cells
EAGER:用于体异质结太阳能电池的等离激元广角聚光器
基本信息
- 批准号:1346859
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Yu, Qiuming Proposal Number: 1346859 Institution: University of WashingtonTitle: EAGER: Plasmonic Wide Angle Light Concentrators for Bulk-Heterojunction Solar CellsOrganic bulk heterojunction (BHJ) solar cells offer the potential advantages as low-cost, lightweight, flexible, and large area devices that can be fabricated in the roll-to-roll printing method. Despite the recent progress in the increase of power conversion efficiency (PCE) of organic BHJ solar cells, fundamental breakthrough has to be made in order to develop high efficiency solar cells especially those working for wide light incident angles. This EAGER project will explore the concept of integrating novel plasmonic wide angle light concentrators as transparent electrodes in BHJ solar cells to tune and enhance transmitted light to match the energy band gaps of the donor and acceptor in the active layer in a wide range of incident angles. Electromagnetic finite-difference time-domain (FDTD) simulations will be applied to rationally design the plasmonic nanostructures and the transfer matrix (TM) optical modeling will be used to design the entire device architecture to ensure the maximum light absorption in the active layer. The designed plasmonic nanostructures will be made on glass substrates via the nanoimprinting method which can be extended to the low-cost roll-to-roll printing method. The effects of far-field light transmission and near-field electric field enhancementinduced by plasmonic nanostructures on the performance of BHJ solar cells and the fundamental physical processes in solar energy conversion will be elucidated by conducting the experimental measurements on photocurrent density-voltage curve, reflectance and UV-Vis absorption spectroscopy, steady state and dynamic photoluminescence (PL), and external quantum efficiency (EQE). The objective of this work is to fundamentally understand the physical principles and processes governing the tuning of wide angle light absorption and the enhancement of charge transport and collection in BHJ solar cells by plasmonic nanostructures via a combined electromagnetic simulation and experimental approach.By integrating plasmonic wide angle light concentrators as transparent electrodes in BHJ solar cells, it will allow one to (1) replace the expensive ITO; (2) tune and concentrate far-field transmitted light to match the band gaps of donor and acceptor in the active layer; (3) enable wide angle absorption without mechanical moving parts; and (4) understand near-filed electric field enhancement on exciton generation and charge separation, transport and collection. A wide angle light concentrator enabled by plasmonic nanostructures will be developed and integrated into organic BHJ solar cells to enhance the solar energy conversion efficiency even at large oblique incident angles. The fundamental investigation and experimental findings from this work can be generalized for guiding the development of other types of solar cells and novel optoelectronic and plasmonic devices. Graduate and undergraduate students from underrepresented groups such as female will receive training and participate in this highly interdisciplinary research project.
PI:于秋明 提案编号:1346859 机构:华盛顿大学 标题:EAGER:用于体异质结太阳能电池的等离子广角聚光器有机体异质结(BHJ)太阳能电池具有低成本、轻质、柔性和大面积器件的潜在优势,可以通过卷对卷印刷方法制造。尽管最近在提高有机BHJ太阳能电池的功率转换效率(PCE)方面取得了进展,但为了开发高效太阳能电池,特别是那些适用于宽光入射角的太阳能电池,还需要取得根本性突破。该EAGER项目将探索将新型等离子体广角聚光器集成为BHJ太阳能电池中的透明电极的概念,以调整和增强透射光,以匹配有源层中的施主和受主在各种入射角下的能带隙。将应用电磁时域有限差分(FDTD)模拟来合理设计等离子体纳米结构,并使用传输矩阵(TM)光学建模来设计整个器件架构,以确保有源层中的最大光吸收。设计的等离子体纳米结构将通过纳米压印方法在玻璃基板上制成,该方法可以扩展到低成本的卷对卷印刷方法。通过光电流密度-电压曲线、反射率和紫外-可见吸收光谱、稳态和动态光致发光(PL)以及外量子效率的实验测量,阐明等离子体纳米结构引起的远场光传输和近场电场增强对BHJ太阳能电池性能和太阳能转换基本物理过程的影响 (EQE)。这项工作的目的是通过电磁模拟和实验相结合的方法,从根本上理解等离子体纳米结构调节广角光吸收以及增强 BHJ 太阳能电池中电荷传输和收集的物理原理和过程。通过将等离子体广角聚光器集成为 BHJ 太阳能电池中的透明电极,它将允许人们(1)取代昂贵的 ITO; (2)调整并集中远场透射光以匹配有源层中施主和受主的带隙; (3)无需机械移动部件即可实现广角吸收; (4)了解近场电场增强对激子产生和电荷分离、传输和收集的影响。将开发由等离子体纳米结构实现的广角聚光器,并将其集成到有机 BHJ 太阳能电池中,以提高太阳能转换效率,即使在大斜入射角下也是如此。这项工作的基础研究和实验结果可以推广用于指导其他类型的太阳能电池以及新型光电和等离子体器件的开发。来自女性等代表性不足群体的研究生和本科生将接受培训并参与这个高度跨学科的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiuming Yu其他文献
Parameter Self-Tuning PID Control for Greenhouse Climate Control Problem
温室气候控制问题的参数自整定PID控制
- DOI:
10.1109/access.2020.3030416 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yuanping Su;Qiuming Yu;Lu Zeng - 通讯作者:
Lu Zeng
Functional Optical Imaging-based Biosensors Characterize Zwitterionic Coatings on SiO2 for Cancer Biomarker Detection
基于功能光学成像的生物传感器表征 SiO2 上的两性离子涂层,用于癌症生物标志物检测
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Norman D Brault;Shaoyi Jiang;Qiuming Yu - 通讯作者:
Qiuming Yu
Molecular dynamics simulation of the surface reconstruction and strain relief in Si1-xGex/Si(100) heterostructures
Si1-xGex/Si(100)异质结构表面重构和应变消除的分子动力学模拟
- DOI:
10.1088/0965-0393/2/4/003 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Qiuming Yu;P. Clancy - 通讯作者:
P. Clancy
Direct detection and imaging of low-energy electrons with delta-doped charge-coupled devices
使用δ掺杂电荷耦合器件直接检测和成像低能电子
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
S. Nikzad;Qiuming Yu;Aimee Smith;T. Jones;T. Tombrello;S. Elliott - 通讯作者:
S. Elliott
The Fano resonance in quasi-3D gold plasmonic nanostructure arrays for surface-enhanced Raman scattering
用于表面增强拉曼散射的准 3D 金等离子体纳米结构阵列中的 Fano 共振
- DOI:
10.1117/12.930423 - 发表时间:
2012 - 期刊:
- 影响因子:2.2
- 作者:
Daqian Wang;Xinglong Yu;Qiuming Yu - 通讯作者:
Qiuming Yu
Qiuming Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiuming Yu', 18)}}的其他基金
NSF-GACR: An Optical Biosensing Platform for Simultaneous Detection and Quantification of Exosomes and Exosomal Cargo Biomarkers
NSF-GACR:用于同时检测和定量外泌体和外泌体货物生物标志物的光学生物传感平台
- 批准号:
2247222 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Materials and Interface Engineering for Highly Efficient and Stable 2D/3D Tin Pseudohalide Perovskite Solar Cells
高效稳定的 2D/3D 锡赝卤化物钙钛矿太阳能电池的材料和界面工程
- 批准号:
2054942 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Two-Dimensional Chiral Perovskites with Tunable Electronic Band Structure and Superior Charge Transport
具有可调谐电子能带结构和卓越电荷传输的二维手性钙钛矿
- 批准号:
2114350 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
2051617 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
1661660 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
EAGER: Interface Engineering for Low-Temperature Process and Stable Organometal Perovskite Solar Cells
EAGER:低温工艺和稳定有机金属钙钛矿太阳能电池的界面工程
- 批准号:
1748101 - 财政年份:2017
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Rapid Identification of Pathogenic Bacteria Based on Long-range SERS Microarray Biosensors
基于长距离SERS微阵列生物传感器的病原菌快速鉴定
- 批准号:
1159609 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
- 批准号:22304162
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
- 批准号:22004002
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
- 批准号:21605057
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
- 批准号:11604227
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
- 批准号:21475125
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
- 批准号:21175125
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 9万 - 项目类别:
Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Fellowship
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
- 批准号:
10076382 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant for R&D
A ultra-sensitive infrared plasmonic-thermoelectric system
超灵敏红外等离子体热电系统
- 批准号:
23H01785 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of photonic reaction field based on collectrive behaviour of plasmonic particles using quntum coherence
利用量子相干性基于等离子体粒子的集体行为创建光子反应场
- 批准号:
23H01916 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
- 批准号:
2885938 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Studentship
EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
- 批准号:
2334968 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
- 批准号:
2304910 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant














{{item.name}}会员




