Materials and Interface Engineering for Highly Efficient and Stable 2D/3D Tin Pseudohalide Perovskite Solar Cells
高效稳定的 2D/3D 锡赝卤化物钙钛矿太阳能电池的材料和界面工程
基本信息
- 批准号:2054942
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photovoltaic (PV) technology is sustainable, clean source of energy with the capacity to fulfill our growing energy needs. Hybrid organic-inorganic lead halide perovskite solar cells (PSCs) have emerged in the past decade as a promising low-cost, thin film solar cell with high efficiency and roll-to-roll printing processability, which could encourage a transition into a clean energy economy. However, the use of lead raises the concerns for commercialization because of the potential environmental contamination and human health problems. It is important to carefully find an environmentally benign and efficient replacement for lead with a focus on keeping the excellent properties ascribed to its presence in perovskite materials. Tin perovskite is regarded as an ideal candidate to replace lead perovskite with the theoretical PCE of tin PSCs close to 30% according to Shockley-Queisser limit. Despite progress having been made, the efficiency and stability of tin PSCs are still inferior to their lead counterparts. This project will apply a synergetic approach via materials and interface engineering with the goal to reduce defects, suppress tin oxidization, enhance charge extraction and transport, and reduce energy losses, hence, to increase the efficiency and stability of tin PSCs. Success in this project will advance the knowledge of ionic semiconducting materials and device physics of thin film solar cells, which could lead to a transition into a clean energy economy because of potential commercialization of lead-free, highly efficient and stable PSCs fabricated with low-temperature, large-area, high-throughput processes. Graduate and undergraduate students from underrepresented groups will receive training in this highly interdisciplinary research project. The knowledge gained from this work will be disseminated through the workshop that the PI group will offer to the annual event of Expanding Your Horizons at Cornell campus and Ithaca Sciencenter by providing hands-on activities and demonstrations for young students and their families. The challenge with tin-based PSCs is primarily due to tin-defects, resulting in the undesirable nonradiative recombination of photocarriers and metallic conductivity, and the attendant loss of open-circuit voltage. Additionally, the dangling bonds on the surface and at the grain boundaries introduce trap states, which act as the centers of nonradiative recombination and degradation sites. The research team aims to (1) develop novel Dion-Jacobson (DJ) phase two-dimensional and three-dimensional (2D/3D) tin pseudohalide perovskites to reduce tin defects and passivate defects at the grain boundaries and surfaces; (2) synthesize new hole transport materials by introducing functional groups to guide perovskite growth and reduce interface trap states; and (3) deploy new hole and electron transport materials in tin PSCs to increase device efficiency and stability. Forming DJ phase 2D/3D hybrid tin perovskites represents a paradigm shift in tackling the challenge of efficiency and stability of tin-based PSCs. The intellectual merit is driven by our hypotheses: (1) the defects can be significantly reduced and the tin oxidation can be effectively suppressed by adopting large A’-site divalent cations and pseudohalide anions to form 2D/3D bulk and planar heterojunction tin perovskites; and (2) the energy losses can be significantly reduced and the device stability can be greatly enhanced by utilizing newly developed hole and electron transport materials to guide perovskite growth and passivate defects, respectively. By fundamentally understanding the structural and optoelectronic properties of DJ phase 2D/3D tin pseudohalide perovskites, the effect of functionalized hole transport layer on the growth of perovskites, and the non-fullerene acceptor interaction with perovskites, the general principles to guide the development of highly efficient, stable tin PSCs can be elucidated, which could lead to the transformation of clean energy techniques. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光伏(PV)技术是一种可持续、清洁的能源,有能力满足我们日益增长的能源需求。有机-无机混合卤化铅钙钛矿太阳能电池(PSCs)是近十年来出现的一种低成本、高效率、可卷对卷印刷的薄膜太阳能电池,有望推动向清洁能源经济的过渡。然而,由于潜在的环境污染和人类健康问题,铅的使用引发了对商业化的担忧。重要的是要仔细寻找一种环境友好和高效的铅的替代品,重点是保持其在钙钛矿材料中存在的优异性能。锡钙钛矿被认为是替代铅钙钛矿的理想候选者,根据Shockley-Queisser极限,锡PSCs的理论相变系数接近30%。尽管取得了进展,但锡私营部门合作伙伴关系的效率和稳定性仍逊于其主导伙伴关系。该项目将通过材料和界面工程应用协同方法,目标是减少缺陷,抑制锡氧化,增强电荷提取和传输,减少能量损失,从而提高TiN PSCs的效率和稳定性。该项目的成功将促进对离子半导体材料和薄膜太阳能电池器件物理的了解,这可能会导致向清洁能源经济的过渡,因为通过低温、大面积、高通量工艺制造的无铅、高效和稳定的PSC具有潜在的商业化潜力。来自代表性不足群体的研究生和本科生将接受这一高度跨学科的研究项目的培训。从这项工作中获得的知识将通过PI小组为康奈尔校园和伊萨卡科学中心的年度扩大视野活动提供的研讨会传播,为年轻学生及其家庭提供实践活动和演示。锡基PSCS的挑战主要是由于锡缺陷,导致光载流子和金属导电性的非辐射复合,以及随之而来的开路电压损失。此外,表面和晶界上的悬挂键引入了陷阱态,作为非辐射复合和降解位置的中心。该研究小组的目标是(1)开发新型Dion-Jacobson(DJ)相二维和三维(2D/3D)锡伪卤化物钙钛矿,以减少锡缺陷并钝化晶界和表面的缺陷;(2)通过引入官能团来指导钙钛矿生长和减少界面陷阱态,合成新的空穴传输材料;以及(3)在TiN PSCS中部署新的空穴和电子传输材料,以提高器件效率和稳定性。形成DJ相2D/3D杂化TiN钙钛矿代表了解决TiN基PSCs效率和稳定性挑战的范式转变。这一智能优势是由我们的假设驱动的:(1)采用大的A‘位二价阳离子和假卤化物阴离子形成2D/3D体相和平面异质结TiN钙钛矿,可以显著减少缺陷,有效抑制锡氧化;(2)利用新开发的空穴和电子传输材料分别引导钙钛矿生长和钝化缺陷,可以显著降低能量损失,提高器件稳定性。通过从根本上了解DJ相2D/3DTiN类卤化物钙钛矿的结构和光电性质,功能化空穴传输层对钙钛矿生长的影响,以及非富勒烯受体与钙钛矿的相互作用,可以阐明指导高效、稳定的TiN PSCs开发的一般原则,这可能会导致清洁能源技术的变革。 该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden-Popper tin perovskite solar cells
- DOI:10.1016/j.xcrp.2022.101060
- 发表时间:2022-09
- 期刊:
- 影响因子:8.9
- 作者:Hao Li;Yuanze Xu;Shripathi Ramakrishnan;Yugang Zhang;M. Cotlet;Tony Lou Xu;Qiuming Yu
- 通讯作者:Hao Li;Yuanze Xu;Shripathi Ramakrishnan;Yugang Zhang;M. Cotlet;Tony Lou Xu;Qiuming Yu
Ruddlesden–Popper Perovskites with Narrow Phase Distribution for Air‐Stable Solar Cells
Ruddlesden — 具有窄相分布的波普尔钙钛矿用于空气 — 稳定太阳能电池
- DOI:10.1002/solr.202200490
- 发表时间:2022
- 期刊:
- 影响因子:7.9
- 作者:Ramakrishnan, Shripathi;Li, Hao;Xu, Yuanze;Shin, Dongyoon;Dursun, Ibrahim;Cotlet, Mircea;Zhang, Yugang;Yu, Qiuming
- 通讯作者:Yu, Qiuming
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiuming Yu其他文献
Parameter Self-Tuning PID Control for Greenhouse Climate Control Problem
温室气候控制问题的参数自整定PID控制
- DOI:
10.1109/access.2020.3030416 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yuanping Su;Qiuming Yu;Lu Zeng - 通讯作者:
Lu Zeng
Functional Optical Imaging-based Biosensors Characterize Zwitterionic Coatings on SiO2 for Cancer Biomarker Detection
基于功能光学成像的生物传感器表征 SiO2 上的两性离子涂层,用于癌症生物标志物检测
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Norman D Brault;Shaoyi Jiang;Qiuming Yu - 通讯作者:
Qiuming Yu
Molecular dynamics simulation of the surface reconstruction and strain relief in Si1-xGex/Si(100) heterostructures
Si1-xGex/Si(100)异质结构表面重构和应变消除的分子动力学模拟
- DOI:
10.1088/0965-0393/2/4/003 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Qiuming Yu;P. Clancy - 通讯作者:
P. Clancy
Direct detection and imaging of low-energy electrons with delta-doped charge-coupled devices
使用δ掺杂电荷耦合器件直接检测和成像低能电子
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
S. Nikzad;Qiuming Yu;Aimee Smith;T. Jones;T. Tombrello;S. Elliott - 通讯作者:
S. Elliott
The Fano resonance in quasi-3D gold plasmonic nanostructure arrays for surface-enhanced Raman scattering
用于表面增强拉曼散射的准 3D 金等离子体纳米结构阵列中的 Fano 共振
- DOI:
10.1117/12.930423 - 发表时间:
2012 - 期刊:
- 影响因子:2.2
- 作者:
Daqian Wang;Xinglong Yu;Qiuming Yu - 通讯作者:
Qiuming Yu
Qiuming Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiuming Yu', 18)}}的其他基金
NSF-GACR: An Optical Biosensing Platform for Simultaneous Detection and Quantification of Exosomes and Exosomal Cargo Biomarkers
NSF-GACR:用于同时检测和定量外泌体和外泌体货物生物标志物的光学生物传感平台
- 批准号:
2247222 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Two-Dimensional Chiral Perovskites with Tunable Electronic Band Structure and Superior Charge Transport
具有可调谐电子能带结构和卓越电荷传输的二维手性钙钛矿
- 批准号:
2114350 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
2051617 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Solvent-based Roll-to-Roll Nanoimprinting for Large Area Nanopatterning
用于大面积纳米图案化的溶剂型卷对卷纳米压印
- 批准号:
1661660 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
EAGER: Interface Engineering for Low-Temperature Process and Stable Organometal Perovskite Solar Cells
EAGER:低温工艺和稳定有机金属钙钛矿太阳能电池的界面工程
- 批准号:
1748101 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
EAGER: Plasmonic Wide Angle Light Concentrators for Bulk-Heterojunction Solar Cells
EAGER:用于体异质结太阳能电池的等离激元广角聚光器
- 批准号:
1346859 - 财政年份:2013
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Rapid Identification of Pathogenic Bacteria Based on Long-range SERS Microarray Biosensors
基于长距离SERS微阵列生物传感器的病原菌快速鉴定
- 批准号:
1159609 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似海外基金
Combining Advanced Materials for Interface Engineering (CAMIE)
结合先进材料进行界面工程 (CAMIE)
- 批准号:
EP/X027074/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Research Grant
Interface engineering for high performance carbon nanotube thermoelectric materials
高性能碳纳米管热电材料的界面工程
- 批准号:
21K04842 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Materials, Device, And Interface Engineering for Non-Conventional Electronics by Hard/Soft Material Integration
通过硬/软材料集成实现非常规电子产品的材料、器件和接口工程
- 批准号:
435914-2013 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Materials, Device, And Interface Engineering for Non-Conventional Electronics by Hard/Soft Material Integration
通过硬/软材料集成实现非常规电子产品的材料、器件和接口工程
- 批准号:
435914-2013 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Stress and Interface Engineering of Functional Materials
功能材料的应力与界面工程
- 批准号:
RGPIN-2015-04185 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Materials, Device, And Interface Engineering for Non-Conventional Electronics by Hard/Soft Material Integration
通过硬/软材料集成实现非常规电子产品的材料、器件和接口工程
- 批准号:
435914-2013 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Materials, Device, And Interface Engineering for Non-Conventional Electronics by Hard/Soft Material Integration
通过硬/软材料集成实现非常规电子产品的材料、器件和接口工程
- 批准号:
435914-2013 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




