GOALI: Size and Anisotropy Effects in Micro/Nano-bonds with Comparable Grain and Bond Sizes

目标:具有可比晶粒和键尺寸的微/纳米键的尺寸和各向异性效应

基本信息

  • 批准号:
    1160661
  • 负责人:
  • 金额:
    $ 32.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-15 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

This Grant Opportunities for Academic Liaison with Industry (GOALI) award is to investigate process-microstructure-mechanical behavior in micro/nano bonds fabricated using a new technology of solid-liquid inter-diffusion. These bonds, that are used to join metallic interconnects in microelectronic devices, have a comparable size with their constituting grains. Therefore, they are expected to behave anisotropically. Furthermore, unlike conventional joints, these joints mainly consist of intermetallics which profoundly affect the mechanical behavior of these bonds. Mechanical reliability of these bonds dictates the reliability and yield of the electronic devices fabricated using these bonds. The goal of this research is to investigate the kinetics of bond formation as well as the mechanics of deformation, fatigue and failure of these bonds through modeling and experimentation. An experiment will be designed and conducted on the process to determine the effect of process parameters on the microstructure and mechanical behavior of these bonds and to determine the optimal process condition. Phase field numerical models will be developed to simulate the kinetics of bond formation. Mechanisms of deformation and damage will be studied through in situ mechanical and fatigue experiments at the micro/nano scale. Finite element simulation will be used to model fatigue and damage in these anisotropic bonds. The research will be conducted in collaboration with Intel Corporation who will provide assistance with specimen fabrication, thermo-mechanical fatigue testing and failure analysis of the specimens. This research will lead to enhancements in the solid-liquid inter-diffusion process making it a viable option for electronic manufacturers to produce energy efficient high quality and reliable electronic devices. It will facilitate and expedite the process of eliminating lead from the current electronic processes making the process more environmentally friendly and benign. Simulation tools and fundamental knowledge generated in this research will advance several disciplines including electronic manufacturing, mechanics and material science and engineering.
这个学术界与工业界联系的赠款机会(GOALI)奖是为了研究使用固液互扩散新技术制造的微/纳米键的过程-微观结构-机械行为。这些用于连接微电子器件中的金属互连的键合具有与其构成晶粒相当的尺寸。因此,预期它们表现为各向异性。此外,与传统接头不同,这些接头主要由金属间化合物组成,这深刻地影响了这些键的机械行为。这些键合的机械可靠性决定了使用这些键合制造的电子器件的可靠性和产量。本研究的目的是通过建模和实验来研究键合形成的动力学以及这些键合的变形、疲劳和失效的机理。将设计一个实验,并在该过程中进行,以确定这些债券的微观结构和机械性能的工艺参数的影响,并确定最佳的工艺条件。将开发相场数值模型来模拟键形成的动力学。变形和损伤机制将通过原位力学和疲劳实验在微米/纳米尺度上进行研究。有限元模拟将用于模拟这些各向异性粘结中的疲劳和损伤。这项研究将与英特尔公司合作进行,英特尔公司将在试样制造、热机械疲劳测试和试样失效分析方面提供援助。 这项研究将导致固液互扩散过程的增强,使其成为电子制造商生产节能、高质量和可靠电子设备的可行选择。 它将促进和加快从目前的电子工艺中消除铅的进程,使该工艺更加环保和良性。在这项研究中产生的仿真工具和基础知识将推动几个学科,包括电子制造,机械和材料科学与工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leila Ladani其他文献

Mechanical Strength and Failure Characterization of Sn-Ag-Cu Intermetallic Compound Joints at the Microscale
  • DOI:
    10.1007/s11664-011-1836-1
  • 发表时间:
    2011-12-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Leila Ladani;Jafar Razmi
  • 通讯作者:
    Jafar Razmi

Leila Ladani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leila Ladani', 18)}}的其他基金

Design and Manufacturing of Medical Devices and Implants: Cultivating a Human- Centered Mindset
医疗器械和植入物的设计和制造:培养以人为本的思维模式
  • 批准号:
    2152254
  • 财政年份:
    2022
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
A Novel Cu/CNT Material System for Through Silicon Via Interconnects
用于硅通孔互连的新型 Cu/CNT 材料系统
  • 批准号:
    1734983
  • 财政年份:
    2017
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
GOALI: Size and Anisotropy Effects in Micro/Nano-bonds with Comparable Grain and Bond Sizes
目标:具有可比晶粒和键尺寸的微/纳米键的尺寸和各向异性效应
  • 批准号:
    1416682
  • 财政年份:
    2013
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
A Novel Cu/CNT Material System for Through Silicon Via Interconnects
用于硅通孔互连的新型 Cu/CNT 材料系统
  • 批准号:
    1415165
  • 财政年份:
    2013
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
A Novel Cu/CNT Material System for Through Silicon Via Interconnects
用于硅通孔互连的新型 Cu/CNT 材料系统
  • 批准号:
    1234652
  • 财政年份:
    2012
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
BRIGE: Anisotropic Deformation and Damage Mechanisms in Al-Mg Bi-modal Grain Size Alloy
BRIGE:铝镁双峰晶粒合金中的各向异性变形和损伤机制
  • 批准号:
    1053434
  • 财政年份:
    2010
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
BRIGE: Anisotropic Deformation and Damage Mechanisms in Al-Mg Bi-modal Grain Size Alloy
BRIGE:铝镁双峰晶粒合金中的各向异性变形和损伤机制
  • 批准号:
    0927319
  • 财政年份:
    2009
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant

相似国自然基金

面向下一代LCD显示技术应用的氮化物多量子阱结构绿光mini-size LED性能研究
  • 批准号:
    61904158
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Size matters, but at what cost? Role of male sex hormones in the placenta
规模很重要,但代价是什么?
  • 批准号:
    DP240102256
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Discovery Projects
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Standard Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Fellowship Award
Establishing the role of cell size dysregulation in cancer cell physiology and cellular ageing
确定细胞大小失调在癌细胞生理学和细胞衰老中的作用
  • 批准号:
    MR/X020290/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Fellowship
The influences of size reduction of a Total Artificial Heart on fluid dynamics and blood compatibility.
全人工心脏尺寸减小对流体动力学和血液相容性的影响。
  • 批准号:
    2903462
  • 财政年份:
    2024
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Studentship
Defining how signalling pathways cooperate to regulate organ size
定义信号通路如何合作调节器官大小
  • 批准号:
    DP230101406
  • 财政年份:
    2023
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Discovery Projects
Development of magnetic coated rectangular wire for reducing AC copper loss and reducing size and weight of transformers and inductors
开发磁性涂层矩形线,以减少交流铜损并减小变压器和电感器的尺寸和重量
  • 批准号:
    23H01397
  • 财政年份:
    2023
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bayesian Methods for Sample Size Re-estimation
样本量重新估计的贝叶斯方法
  • 批准号:
    2884699
  • 财政年份:
    2023
  • 资助金额:
    $ 32.76万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了