Variational Methods and Dynamics

变分方法和动力学

基本信息

  • 批准号:
    1160939
  • 负责人:
  • 金额:
    $ 21.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on problems in the calculus of variations and partial differential equations. A theory, now called direct methods of the calculus of variations, was developed by Charles Morrey in the middle of the last century wherein he introduced various fundamental concepts of convexity. This theory has wide application to many fields, including John Ball's groundbreaking work in elasticity theory. Recently, John Ball published a list of outstanding problems in the calculus of variations whose solutions will not only advance that field but will also have major impacts in elasticity theory. In recent work, the principal investigator has started to develop tools to handle specific concrete problems from that list. This will, he hopes, lead to general theories. The project will extend this study to include important classes of variational problems that have defied existing theory, such as the stored energy functional of Ogden material, which appears in elasticity. Another class of problems to be studied arises in mass transportation theory. It was first formulated by Monge in 1771 as a simple geometry problem and later extended by Kantorovich to more general cost functions. It consists in finding the optimal (minimal work) method for transporting a pile of earth at one location to an excavation site at another location. These classical results have been extended to more general cost functions by the principal investigator, his students, postdocs, collaborators and many others, with special attention to the Wasserstein (or Kantorovich) metric. Building on these results, the project will investigate so-called axi-symmetric flows, which preliminary computations indicate are Hamiltonian systems on the Wasserstein space. The principal investigator has established a link between the study of these flows and a poorly understood (challenging) class of parameter-dependent Monge-Ampere equations. He will study the existence of paths satisfying a certain basic stability criterion and connecting two prescribed symplectic forms. These problems, interesting in their own right, include searching for geodesics in the set of symplectic forms.Tproject will have a number of important scientific and educational components. First, the theoretical advances will directly aid other scientific research areas, including meteorology, elasticity theory, and other applied sciences, that use variational methods in their algorithms. Second, the principal investigator will continue to disseminate the research by giving courses and lectures in international conferences, workshops, and seminars. Finally, in addition to continuing to mentor undergraduates and Ph.D. students at his home institution, he will extend his active support of underrepresented groups in mathematics, in part by mentoring students and faculty at Spelman College, a local HBCU. Current projects involve Spelman's Professor Yewande Olubummo, who together with the principal investigator plans to develop tools for use in the study of shape recognition.
这个项目的重点是变分法和偏微分方程的问题。一个理论,现在被称为直接方法的变分法,是由查尔斯Morrey在中间的最后一个世纪,他介绍了各种基本概念的凸性。这个理论在许多领域都有广泛的应用,包括约翰·鲍尔在弹性理论方面的开创性工作。最近,约翰·鲍尔(John Ball)发表了一系列变分法中的突出问题,这些问题的解决方案不仅将推动该领域的发展,而且将对弹性理论产生重大影响。 在最近的工作中,首席研究员已开始开发工具,以处理该清单中的具体问题。他希望,这将导致一般理论。 该项目将扩展这项研究,以包括重要类别的变分问题,挑战现有的理论,如奥格登材料的储能功能,出现在弹性。另一类需要研究的问题出现在物质运输理论中。 它首先制定了蒙日在1771年作为一个简单的几何问题,后来扩展到康托洛维奇更一般的成本函数。它包括寻找最佳(最小工作)方法,将一个位置的一堆土运输到另一个位置的挖掘现场。这些经典的结果已被扩展到更一般的成本函数的主要研究者,他的学生,博士后,合作者和许多其他人,特别注意瓦瑟斯坦(或康托洛维奇)度量。 在这些结果的基础上,该项目将研究所谓的轴对称流,初步计算表明这是Wasserstein空间上的Hamilton系统。 主要研究者已经建立了这些流动的研究和一个鲜为人知的(具有挑战性的)类参数依赖的蒙赫-安培方程之间的联系。他将研究存在的道路满足一定的基本稳定性标准和连接两个规定的辛形式。这些问题本身就很有趣,包括在辛形式集中寻找测地线。Tproject将有许多重要的科学和教育组成部分。 首先,理论上的进步将直接帮助其他科学研究领域,包括气象学,弹性理论和其他应用科学,在其算法中使用变分方法。第二,首席研究员将继续通过在国际会议、讲习班和研讨会上开设课程和讲座来传播研究成果。最后,除了继续指导本科生和博士生,在他的家乡机构的学生,他将扩大他的数学代表性不足的群体的积极支持,部分通过指导学生和教师在斯佩尔曼学院,当地HBCU。目前的项目涉及Spelman的教授Yewande Olubummo,他与首席研究员一起计划开发用于形状识别研究的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfrid Gangbo其他文献

Wilfrid Gangbo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金

Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
  • 批准号:
    2154578
  • 财政年份:
    2022
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
  • 批准号:
    1700202
  • 财政年份:
    2017
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
2009 Weak KAM Theory in Nice
2009 尼斯弱KAM理论
  • 批准号:
    0903201
  • 财政年份:
    2009
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
2007 International Conference in Ouidah
2007 年维达国际会议
  • 批准号:
    0726688
  • 财政年份:
    2007
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Geometry on the Set of Probability Measures
概率测度集的几何
  • 批准号:
    0600791
  • 财政年份:
    2006
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
  • 批准号:
    0354729
  • 财政年份:
    2004
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
  • 批准号:
    0200267
  • 财政年份:
    2002
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
  • 批准号:
    0074037
  • 财政年份:
    2000
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
  • 批准号:
    9970520
  • 财政年份:
    1999
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
  • 批准号:
    9622734
  • 财政年份:
    1996
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
  • 批准号:
    DE240100992
  • 财政年份:
    2024
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Discovery Early Career Researcher Award
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
  • 批准号:
    10749273
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2331033
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Development of the measurement, identification and quantification methods for investigating nanoplastic dynamics from terrestrial to atmospheric environments
开发用于研究从陆地到大气环境的纳米塑料动力学的测量、识别和量化方法
  • 批准号:
    22KJ1953
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
  • 批准号:
    10607487
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
  • 批准号:
    EP/Y034686/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Research Grant
IIBR Research Methods: Probing the structure, abundance, dynamics, and function of protein complexes within their cellular environment
IIBR 研究方法:探测细胞环境中蛋白质复合物的结构、丰度、动态和功能
  • 批准号:
    2327468
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Enabling ion Mobility Spectrometry/Mass Spectrometry Methods to Study Conformational Dynamics of Protein Systems
使用离子淌度谱/质谱方法来研究蛋白质系统的构象动力学
  • 批准号:
    2305173
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Development of numerical methods for simulating quantum dynamics towards the control of quantum computers
开发用于模拟量子动力学以控制量子计算机的数值方法
  • 批准号:
    23K13042
  • 财政年份:
    2023
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了