Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
基本信息
- 批准号:9970520
- 负责人:
- 金额:$ 9.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9970520Principal Investigator: Wilfrid GangboAbstract: In 1904, in his remarkable paper on the limits of economy in framed structures, Michell attacked the following difficult problem: given an equilibrium system of forces (loads and reactions) with specified points of application, and given an elastic material with allowable range for its uniaxial stress, to design a truss in the plane with bars of the given material such that the given forces produce axial stresses within the allowable limits, while the total volume of material used for the bars is as small as possible. Michell's problem and its many variants and extensions have attracted a lot of attention in the last few years among engineers as well as mathematicians. In the coplanar case, Michell formally proved that, in the optimal layout, bars are arranged along the lines of principal strains of a displacement that arises as a Lagrange multiplier. These lines form an orthogonal system of coordinates in the plane. Any optimal design satisfying these conditions is called a Michell truss. Gangbo plans to study geometrical and topological properties of supports of optimal stresses. Techniques for studying this problem are similar to those that apply to the Monge-Kantorovich problem. Gangbo also plans to make use of the Monge-Kantorovich theory, which has recently been recognized as a powerful tool for constructively studying the semigeostrophic shallow water problem, which is a three-dimensional free boundary problem. The Michell truss problem was originally motivated by the desire to engineer a structure built of beams capable of supporting a specified array of forces, and to do this with maximum economy by using the least quantity of a given elastic material. Of course, while trying to be as efficient as possible, one must still produce a design that ensures a safe structure. Gangbo's interest is to determine good models for the design of such least-volume frames. The determination of the endpoints of the bars of the frame is the most difficult part of this problem. The second part of the proposal consists in studying shallow-water flow, meaning flow in which the vertical length scale is small in comparison to the horizontal length scale (e.g., the flow of ocean currents). If one collects data at a given time, one hopes to predict how that data will evolve over time. For instance, if one measures the pressure of the water today, one would like to forecast its pressure tomorrow. In the geostrophic model, pressure is an important quantity to know. For instance, one can infer the speed of the water from its pressure. Gangbo will use the so-called Monge-Kantorovich theory, which has recently surfaced as a powerful tool in various fields of mathematics.
提案:DMS-9970520首席研究员:Wilfrid Gangbo摘要:1904年,Michell在他关于框架结构经济极限的出色论文中,对以下难题进行了研究:给定一个力的平衡系统(载荷和反力),并给定弹性材料的单轴应力的允许范围,在平面内用给定材料的杆件设计桁架,使给定力产生的轴向应力在允许范围内,而杆件所用材料的总体积尽可能小。米歇尔问题及其许多变体和扩展在过去几年中引起了工程师和数学家的广泛关注。在共面的情况下,米歇尔正式证明,在最佳布局,酒吧安排沿着线的主应变的位移,出现了拉格朗日乘子。这些直线在平面上形成一个正交坐标系。满足这些条件的任何最优设计称为米歇尔桁架。钢波计划研究最优应力支撑的几何和拓扑性质。研究这个问题的技术与应用于Monge-Kantorovich问题的技术相似。Gangbo还计划利用Monge-Kantorovich理论,该理论最近被认为是建设性研究半地转浅水问题的有力工具,这是一个三维自由边界问题。米歇尔桁架问题最初的动机是希望设计一种由能够支撑指定力阵列的梁组成的结构,并通过使用最少数量的给定弹性材料以最大的经济性来实现这一目标。当然,在尽可能提高效率的同时,我们还必须设计出一种确保结构安全的设计。Gangbo的兴趣是确定设计这种最小体积框架的好模型。确定框架的杆的端点是这个问题中最困难的部分。该提案的第二部分包括研究浅水流动,这意味着与水平长度尺度相比,垂直长度尺度较小的流动(例如,洋流的流动)。如果一个人在给定的时间收集数据,他希望预测数据将如何随着时间的推移而演变。例如,如果测量今天的水的压力,那么人们希望预测明天的压力。在地转模式中,气压是一个需要知道的重要量。例如,人们可以从水的压力推断出水的速度。Gangbo将使用所谓的Monge-Kantorovich理论,该理论最近在数学的各个领域中成为一个强大的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilfrid Gangbo其他文献
Wilfrid Gangbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金
Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
- 批准号:
2154578 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
- 批准号:
1700202 - 财政年份:2017
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
2007 International Conference in Ouidah
2007 年维达国际会议
- 批准号:
0726688 - 财政年份:2007
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Geometry on the Set of Probability Measures
概率测度集的几何
- 批准号:
0600791 - 财政年份:2006
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
- 批准号:
0354729 - 财政年份:2004
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
- 批准号:
0200267 - 财政年份:2002
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
- 批准号:
0074037 - 财政年份:2000
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
- 批准号:
9622734 - 财政年份:1996
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
相似国自然基金
Monge-Ampère方程和k-Hessian方程解的存在性与边界渐近行为研究
- 批准号:12371112
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
抛物型Monge-Ampère方程的新探索
- 批准号:12371200
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
一般凸区域上退化Monge-Ampère方程解的整体正则性
- 批准号:12301250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Monge-Ampère方程的外Liouville定理及相关问题
- 批准号:12301249
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
紧Kähler流形上Monge-Ampère型方程解的存在性问题
- 批准号:12301098
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Monge-Ampère型方程和方程组的若干定性问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复Monge-Ampere型方程的正则性和几何不等式
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
关于Monge-Ampère方程自由边界的正则性及相关问题
- 批准号:12171185
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
Monge-Ampère型方程及相关研究
- 批准号:12141103
- 批准年份:2021
- 资助金额:330 万元
- 项目类别:专项基金项目
预定仿射曲率的Monge-Ampère方程
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
- 批准号:
FT220100368 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
ARC Future Fellowships
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
- 批准号:
DP230100499 - 财政年份:2023
- 资助金额:
$ 9.72万 - 项目类别:
Discovery Projects
Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
- 批准号:
2204347 - 财政年份:2022
- 资助金额:
$ 9.72万 - 项目类别:
Standard Grant
A generalization of the Monge-Ampere equation to almost complex geometry and its new potential applications
蒙日-安培方程对几乎复杂几何的推广及其新的潜在应用
- 批准号:
21K13798 - 财政年份:2021
- 资助金额:
$ 9.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
- 批准号:
DP200101084 - 财政年份:2020
- 资助金额:
$ 9.72万 - 项目类别:
Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
- 批准号:
1914719 - 财政年份:2019
- 资助金额:
$ 9.72万 - 项目类别:
Continuing Grant