Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
基本信息
- 批准号:1700202
- 负责人:
- 金额:$ 18.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In optimal transportation theory, one looks for the best strategies to transport, say, a pile of dirt, to an excavation, where optimality is measured against a prescribed cost function. In his earlier research, the principal investigator (PI) created new tools for optimal transport theory, a theory which has experienced a mathematical renaissance over the last twenty-five years by weaving together threads from analysis, geometry, partial differential equations (PDEs) and dynamical systems. Motivated by his work on systems with large numbers of particles, the PI, with collaborators, has discovered some connections between optimal transportation, games with a large number of players, and Mean Field Games. These unexpected connections open doors to several new avenues of research, some of which being described in this proposal. The goal of this project is to advance knowledge in various other related topics. This includes the geometry of the space of closed differential forms with the non--linear factorization of differential forms. This proposal involves training students, mentoring postdocs and organizing learning seminars for graduate students. The PI will remain involved in national as well as international activities. These, constitute the broader impacts of the proposed activities. The PI studies the mathematical aspects of Density Functional Theory (DFT), as well as certain geometric clustering problems originating in combinatorial optimization. What many of these problems have in common, and what is sometimes novel in the approach for studying them, is their formulation on infinite dimensional ``manifolds'' equipped with metric, differential, and symplectic pseudo-structures. This infinite dimensional setting often lead to a new outlook and --at least on the formal level-- to novel and simpler approaches to otherwise complex problems. A typical example is how Otto's calculus turns many nonlinear PDEs into gradient flows of geodesically convex functionals. In a similar fashion, our searching for geodesic of minimal lengths on the set of differential forms, leads to a new concept of ``quasiconvexity," that looks like an extension of the concept originally introduced by C. Morrey and used extensively in non--linear elasticity theory. Part of the challenge, however, includes turning formal arguments into rigorous ones to yield new results. The intellectual merit of the research is that the problems to be studied have the potential of revealing principles which can be extended to a more general context.
在最优运输理论中,人们寻找最佳的运输策略,比如说,一堆泥土,挖掘,在那里最优性是根据规定的成本函数来衡量的。在他早期的研究中,首席研究员(PI)为最优运输理论创造了新的工具,该理论在过去的二十五年中经历了数学复兴,将分析,几何,偏微分方程(PDE)和动力系统编织在一起。在大量粒子系统研究的激励下,PI与合作者发现了最优运输、大量参与者博弈和平均场博弈之间的一些联系。这些意想不到的联系为几种新的研究途径打开了大门,其中一些在本提案中有所描述。 该项目的目标是推进各种其他相关主题的知识。这包括几何空间的封闭微分形式与非线性因式分解的微分形式。 这项建议涉及培训学生,指导博士后和组织研究生学习研讨会。PI将继续参与国家和国际活动。这些构成了拟议活动的更广泛影响。PI研究密度泛函理论(DFT)的数学方面,以及源自组合优化的某些几何聚类问题。许多这些问题有什么共同之处,什么是有时新颖的方法来研究它们,是他们制定的无限维“流形”配备了度量,微分和辛伪结构。 这种无限的维度设置往往导致一个新的前景和-至少在正式的水平-以新颖和简单的方法,否则复杂的问题。一个典型的例子是奥托的演算如何将许多非线性偏微分方程转化为测地凸泛函的梯度流。以类似的方式,我们在微分形式集上寻找最小长度的测地线,导致了一个新的“拟凸性”概念,它看起来像是最初由C引入的概念的扩展。Morrey的理论,并在非线性弹性理论中得到了广泛的应用.然而,挑战的一部分包括将正式的论点转化为严格的论点,以产生新的结果。 这项研究的学术价值在于,所研究的问题有可能揭示出一些原则,这些原则可以推广到更普遍的情况。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Parallel Method for Earth Mover’s Distance
- DOI:10.1007/s10915-017-0529-1
- 发表时间:2018-04
- 期刊:
- 影响因子:2.5
- 作者:Wuchen Li;Ernest K. Ryu;S. Osher;W. Yin;W. Gangbo
- 通讯作者:Wuchen Li;Ernest K. Ryu;S. Osher;W. Yin;W. Gangbo
Unnormalized optimal transport
- DOI:10.1016/j.jcp.2019.108940
- 发表时间:2019-12-15
- 期刊:
- 影响因子:4.1
- 作者:Gangbo, Wilfrid;Li, Wuchen;Puthawala, Michael
- 通讯作者:Puthawala, Michael
Symplectic decomposition, Darboux theorem and ellipticity
辛分解、达布定理和椭圆率
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dacorogna, B.;Gangbo, W.;Kneuss, O.
- 通讯作者:Kneuss, O.
A partial Laplacian as an infinitesimal generator on the Wasserstein space
部分拉普拉斯算子作为 Wasserstein 空间上的无穷小生成器
- DOI:10.1016/j.jde.2019.06.012
- 发表时间:2019
- 期刊:
- 影响因子:2.4
- 作者:Chow, Yat Tin;Gangbo, Wilfrid
- 通讯作者:Gangbo, Wilfrid
Quasiconvexity and Relaxation in Optimal Transportation of Closed Differential Forms
闭微分形式最优输运中的拟凸性和松弛性
- DOI:10.1007/s00205-019-01390-9
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Dacorogna, Bernard;Gangbo, Wilfrid
- 通讯作者:Gangbo, Wilfrid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wilfrid Gangbo其他文献
Wilfrid Gangbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金
Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
- 批准号:
2154578 - 财政年份:2022
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
2007 International Conference in Ouidah
2007 年维达国际会议
- 批准号:
0726688 - 财政年份:2007
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Geometry on the Set of Probability Measures
概率测度集的几何
- 批准号:
0600791 - 财政年份:2006
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
- 批准号:
0354729 - 财政年份:2004
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
- 批准号:
0200267 - 财政年份:2002
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
- 批准号:
0074037 - 财政年份:2000
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
- 批准号:
9970520 - 财政年份:1999
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
- 批准号:
9622734 - 财政年份:1996
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Variational Inference Sigma Point Filters for High-Dimensional Data
高维数据的变分推理西格玛点过滤器
- 批准号:
551089-2020 - 财政年份:2020
- 资助金额:
$ 18.4万 - 项目类别:
University Undergraduate Student Research Awards
Variational Inference Sigma Point Filters for High-Dimensional Data
高维数据的变分推理西格玛点过滤器
- 批准号:
551088-2020 - 财政年份:2020
- 资助金额:
$ 18.4万 - 项目类别:
University Undergraduate Student Research Awards
Variational Decomposition Models in Imaging Sciences and High Dimensional Multi-Time Hamilton-Jacobi Equations
成像科学中的变分分解模型和高维多次哈密顿-雅可比方程
- 批准号:
1820821 - 财政年份:2018
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 18.4万 - 项目类别:
Continuing Grant
Study of decadal to multi-decadal variability in ocean by using 4-dimensional variational data assimilation method
利用四维变分数据同化方法研究海洋年代际至多年代际变率
- 批准号:
25800269 - 财政年份:2013
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamics of bottom-water warming by using a full-depth four-dimensional variational ocean data assimilation system
利用全深度四维变分海洋数据同化系统研究底层水变暖的动态
- 批准号:
23740361 - 财政年份:2011
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
- 批准号:
1007383 - 财政年份:2010
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Three-dimensional motion of a vortex tube and quest for its optimality based on topological variational principle
基于拓扑变分原理的涡管三维运动及其最优性求解
- 批准号:
19540406 - 财政年份:2007
- 资助金额:
$ 18.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CO2 and water flux estimation by four-dimensional variational assimilation of in situ and remote sensing data (D03)
通过原位和遥感数据四维变分同化估算 CO2 和水通量(D03)
- 批准号:
40997239 - 财政年份:2007
- 资助金额:
$ 18.4万 - 项目类别:
CRC/Transregios