Geometry on the Set of Probability Measures

概率测度集的几何

基本信息

  • 批准号:
    0600791
  • 负责人:
  • 金额:
    $ 20.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-11-30
  • 项目状态:
    已结题

项目摘要

Geometry on the Set of Probability Measures.Abstract of Proposed ResearchWilfrid Gangbo This project is to analyze certain variational problems connected with partial differential equations and applications. A primary topic is the Monge-Kantorovich mass transportation problem and its applications. Also the theory of infinite dimensional Hamiltonian systems on certain spaces of probability measures including examples such as Vlasov-type equations and the semi-geostrophic equation. Another class of problems are the systems of nonlinear parabolic equations that arise in elasticity theory and the design of frames and structures which are optimal in certain senses. The problems to be studied in this project have applications in many different areas including economics, physics, geosciences and engineering. The aim is always to identify the optimal way for a process to occur; so the results may be very important and have wide applicability.
关于概率测度集的几何。拟研究摘要甘波(wilfrid Gangbo)本课题旨在分析与偏微分方程相关的某些变分问题及其应用。一个主要的主题是Monge-Kantorovich大众运输问题及其应用。在一定概率测度空间上的无限维哈密顿系统的理论,包括vlasov型方程和半地转方程等例子。另一类问题是弹性理论中出现的非线性抛物方程系统,以及在某些意义上最优的框架和结构的设计。在这个项目中要研究的问题在许多不同的领域都有应用,包括经济学、物理学、地球科学和工程学。目标始终是确定过程发生的最佳方式;因此,研究结果具有重要意义和广泛的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfrid Gangbo其他文献

Wilfrid Gangbo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金

Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
  • 批准号:
    2154578
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
  • 批准号:
    1700202
  • 财政年份:
    2017
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Variational Methods and Dynamics
变分方法和动力学
  • 批准号:
    1160939
  • 财政年份:
    2012
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
2009 Weak KAM Theory in Nice
2009 尼斯弱KAM理论
  • 批准号:
    0903201
  • 财政年份:
    2009
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
2007 International Conference in Ouidah
2007 年维达国际会议
  • 批准号:
    0726688
  • 财政年份:
    2007
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
  • 批准号:
    0354729
  • 财政年份:
    2004
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
  • 批准号:
    0200267
  • 财政年份:
    2002
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
  • 批准号:
    0074037
  • 财政年份:
    2000
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
  • 批准号:
    9970520
  • 财政年份:
    1999
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
  • 批准号:
    9622734
  • 财政年份:
    1996
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant

相似国自然基金

选择性SET7/9抑制剂的设计优化及缺血性脑损伤保护机制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
C-KIT激酶区突变调控SET在儿童急性髓系白血病耐药中的作用及机制研究
  • 批准号:
    JCZRLH202500940
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SET7通过调控糖酵解和氧化还原稳态参与PE发生发展的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脱乙酰化酶复合物Set3C介导蛋白酶体稳态调控新型隐球菌耐热性
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLK1磷酸化ELF1招募Set1/COMPASS复合体调控胶质瘤谷氨酰胺代谢的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
CBX8协同SET靶向CDH1促进卵果癌上皮间质转化的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
PUF60通过调控SET可变多聚腺苷酸化参与DNA损伤修复促进卵巢癌耐药的机制
  • 批准号:
    82303055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ASXL2缺失致SET1甲基化不足抑制TIP150转录在低氧精子尾部畸形中的作用机制研究
  • 批准号:
    CSTB2023NSCQ-MSX0034
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
甲基转移酶SET-18/SMYD2通过调控溶酶体活性促进衰老的分子机制研究
  • 批准号:
    32371323
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
致癌组蛋白H3K4M突变调控Set1/MLL家族蛋白稳态的分子机制探究
  • 批准号:
    32301059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    EU-Funded
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
CAREER: Set-Based Dynamic Modeling and Control for Trustworthy Energy Management Systems
职业:可信赖的能源管理系统的基于集的动态建模和控制
  • 批准号:
    2336007
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Set in stone? 'Desired whiteness' and the urban space: A collaborative research in (post) colonial Chile.
一成不变的?
  • 批准号:
    ES/X006867/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Research Grant
An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10093554
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    EU-Funded
Descriptive Set Theory and Computability
描述性集合论和可计算性
  • 批准号:
    2348208
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Choiceless set theory
无选择集合论
  • 批准号:
    2348371
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
  • 批准号:
    2237138
  • 财政年份:
    2023
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
Set-theoretic analysis of Taiwanese ethnic and national identity
台湾民族认同的集合论分析
  • 批准号:
    23K01808
  • 财政年份:
    2023
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了