CCF: Medium: Inference with dynamic deep probabilistic models

CCF:中:使用动态深度概率模型进行推理

基本信息

  • 批准号:
    2212506
  • 负责人:
  • 金额:
    $ 119.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The dynamics of complex systems are often studied by processing multivariate time signals that are produced by these systems. Improved understanding of the systems from such signals hinges on working with accurate models of the systems. The rationale of the proposed methodology for making inference from multivariate time signals stands on three important principles: algorithmic compressibility, locality, and deep probabilistic modeling. With algorithmic compressibility, one interprets seemingly complex high-dimensional data in much lower dimensional spaces. With locality, one exploits the fact that in nature the most influential events to an event are its local events. With deep probabilistic modeling, one aims at finding algorithmic compressibilities. These principles are used for developing novel models with little prior knowledge about the dynamics of the observed system. Another challenging problem of interest in the project is discovering causes and effects based on the adopted models. The developed methods are tested on multivariate local field potentials acquired from patients with epilepsy. Based on these signals, the objective is to find the zones in the brain that cause seizures in the patients. Finding these zones and removing them by surgery often cures the patients. The project conceptualizes a principled approach to building deep state-space models with deep probabilistic modeling. The research includes the development of theory and methods for estimating the unknowns of these models, investigation of methods for estimating the structures of the models, extension of the new methods to models that capture regime switching, development of theory and methods for discovering causalities among multivariate time signals, and identification of states that cause seizures in patients with epilepsy. The research is based on minimal assumptions about the models and is carried out within the Bayesian framework. The methodology is not data hungry, and all the produced results are probabilistic in nature. This research on deep probabilistic models and causal discovery considerably extends the capabilities for modeling multivariate time signals, which not only facilitates our understanding of complex systems but also offers new paradigms that extend the horizons and scope of signal processing and machine learning. The applications in medicine and neurosurgery, such as identifying the pathological zones in the brain of epilepsy patients that cause seizures stand on their merit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂系统的动力学通常通过处理这些系统产生的多变量时间信号来研究。从这些信号中更好地理解系统取决于使用系统的精确模型。从多变量时间信号进行推断的方法的基本原理基于三个重要原则:算法可压缩性、局部性和深度概率建模。利用算法压缩性,人们可以在低得多的维度空间中解释看似复杂的高维数据。对于局部性,人们利用了这样一个事实,即在自然界中,对一个事件影响最大的事件是它的局部事件。通过深入的概率建模,人们的目标是找到算法压缩性。这些原则用于开发新的模型,很少有先验知识的动态观察系统。该项目中另一个具有挑战性的问题是根据所采用的模型发现原因和影响。开发的方法进行测试,从癫痫患者获得的多变量局部场电位。根据这些信号,目标是找到导致患者癫痫发作的大脑区域。找到这些区域并通过手术将其移除通常可以治愈患者。 该项目概念化了一种原则性的方法,用于通过深度概率建模来构建深度状态空间模型。该研究包括理论和方法的发展,估计这些模型的未知数,估计模型的结构的方法的调查,新方法的扩展,捕捉政权切换的模型,理论和方法的发展,发现因果关系之间的多变量时间信号,并确定导致癫痫患者癫痫发作的状态。该研究是基于对模型的最小假设,并在贝叶斯框架内进行。该方法不需要大量数据,所有产生的结果本质上都是概率性的。 这种对深度概率模型和因果发现的研究大大扩展了对多变量时间信号建模的能力,这不仅有助于我们对复杂系统的理解,而且还提供了扩展信号处理和机器学习的视野和范围的新范式。在医学和神经外科领域的应用,例如确定癫痫患者大脑中导致癫痫发作的病理区域,都是基于其优点。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Gaussian Latent Variable Model for Incomplete Mixed Type Data
An approach to learning the hierarchical organization of the frontal lobe
学习额叶层次结构的方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Butler, D. Cleveland
  • 通讯作者:
    K. Butler, D. Cleveland
Estimation of time-varying graph topologies from graph signals
从图信号估计时变图拓扑
A Differential Measure of the Strength of Causation
因果关系强度的差异测量
  • DOI:
    10.1109/lsp.2022.3215917
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Butler, Kurt;Feng, Guanchao;Djuric, Petar M.
  • 通讯作者:
    Djuric, Petar M.
On Causal Discovery With Convergent Cross Mapping
  • DOI:
    10.1109/tsp.2023.3286529
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kurt Butler;Guanchao Feng;P. Djurić
  • 通讯作者:
    Kurt Butler;Guanchao Feng;P. Djurić
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petar Djuric其他文献

Antidepressant Effects of ECT may be related to Hippocampal Neurogenesis
  • DOI:
    10.1016/j.brs.2015.01.354
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Colleen Loo;Narcis Cardoner;Harry Hallock;Jesus Pujol;Christos Pantelis;Dennis Velakoulis;Murat Yucel;Perminder Sachdev;Oren Contreras-Rodriguez;Mikel Urretavizcaya;Jose Menchon;Chao Suo;Petar Djuric;Mirjana Maletic-Savatic;Michael Valenzuela
  • 通讯作者:
    Michael Valenzuela
Survival and hospitalization in home versus Institutional hemodialysis—nine years of follow up
  • DOI:
    10.1007/s10047-025-01511-0
  • 发表时间:
    2025-05-18
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Verica Todorov Sakic;Petar Djuric;Ana Bulatovic;Jelena Bjedov;Aleksandar Jankovic;Snezana Pesic;Zivka Djuric;Radomir Naumovic
  • 通讯作者:
    Radomir Naumovic

Petar Djuric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petar Djuric', 18)}}的其他基金

CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
  • 批准号:
    2038801
  • 财政年份:
    2021
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Continuing Grant
Collaborative proposal: GCR: In Search for the Interactions that Create Consciousness
合作提案:GCR:寻找创造意识的互动
  • 批准号:
    2021002
  • 财政年份:
    2020
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Continuing Grant
CIF: Small: Dynamic Networks: Learning, Inference, and Prediction with Nonparametric Bayesian Methods
CIF:小型:动态网络:使用非参数贝叶斯方法进行学习、推理和预测
  • 批准号:
    1618999
  • 财政年份:
    2016
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Travel Support for Student Participation in the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
为学生参加 2014 年 IEEE 声学、语音和信号处理国际会议提供差旅支持
  • 批准号:
    1419742
  • 财政年份:
    2014
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
CIF: Small: Belief Evolutions in Networks of Bayesian Agents
CIF:小:贝叶斯代理网络的信念演变
  • 批准号:
    1320626
  • 财政年份:
    2013
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
EAGER: RFID Sense-a-Tags for the Internet of Things
EAGER:物联网的 RFID 传感标签
  • 批准号:
    1346854
  • 财政年份:
    2013
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
CIF: Small: Learning and herding in complex systems
CIF:小型:复杂系统中的学习和放牧
  • 批准号:
    1018323
  • 财政年份:
    2010
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
SBIR Phase I: An enhanced UHD RFID system for warehouse management
SBIR 第一阶段:用于仓库管理的增强型 UHD RFID 系统
  • 批准号:
    0912774
  • 财政年份:
    2009
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Theory of generalized particle filtering
广义粒子过滤理论
  • 批准号:
    0515246
  • 财政年份:
    2005
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
ITR: Optimization of Reconfigurable Architectures for Efficient Implementation of Particle Filters
ITR:优化可重构架构以高效实现粒子滤波器
  • 批准号:
    0220011
  • 财政年份:
    2002
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
SHF: Medium: Language Support for Sound and Efficient Programmable Inference
SHF:中:对健全且高效的可编程推理的语言支持
  • 批准号:
    2311983
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312262
  • 财政年份:
    2023
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
III: Medium: Counterfactual-Based Supports For Visual Causal Inference
III:媒介:基于反事实的视觉因果推理支持
  • 批准号:
    2211845
  • 财政年份:
    2022
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212512
  • 财政年份:
    2022
  • 资助金额:
    $ 119.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了