TiO2 ultrafast all-optical devices

TiO2超快全光器件

基本信息

  • 批准号:
    1201976
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The objective of this research is to develop on-chip microphotonic devices for future telecommunication bandwidth and computing needs. The approach exploits recent advances in TiO2 photonic nanowires to build novel all-optical modulation, switching, and logic devices.Professor Eric Mazur is an expert in nonlinear optics and pioneer of both silica nanowires and TiO2 photonics. He proposes to leverage TiO2-photonics technology to realize devices for all-optical switching applications within the communications octave (800?1700 nm). TiO2 balances a strong optical nonlinearity with low two-photon absorption, a high refractive index, and wide transparency not achievable in silicon, silica, or chalcogenide glass. These properties enable lithographically defined nanoscale waveguides with huge effective nonlinearities (100,000 times that of silica). The proposed TiO2 Sagnac interferometers are small ( 0.3 mm2), efficient ( 10 pJ), and capable of ultra-high bit-rate all-optical logic ( 1Tb/s). This research will usher in a new paradigm of devices capable of operating across widely spaced communication bands.Beyond miniaturized photonic devices, this proposal will support current collaborations developing integrated quantum optical devices, optical frequency combs, and biological sensors. TiO2 is both inexpensive and scalable, expediting its adoption into society. This work will educate and train future multidisciplinary scientists and engineers through research-based education. Professor Mazurs work with local high schools, NSF-sponsored programs, and the high representation of women in his research group will broaden participation of underrepresented groups. Finally, this work will be broadly disseminated to the public using the group?s well-established program integrating outreach and public education with research.
本研究的目的是开发芯片上的微光子器件,以满足未来电信带宽和计算的需求。该方法利用了TiO 2光子纳米线的最新进展来构建新型全光调制,开关和逻辑器件。Eric Mazur教授是非线性光学专家,也是二氧化硅纳米线和TiO 2光子学的先驱。他建议利用TiO 2光子技术实现通信倍频程(800?1700 nm)。TiO 2平衡了强光学非线性与低双光子吸收、高折射率和宽透明度,这在硅、二氧化硅或硫族化物玻璃中是无法实现的。这些特性使得光刻定义的纳米级波导具有巨大的有效非线性(是二氧化硅的100,000倍)。所提出的二氧化钛Sagnac干涉仪是小(0.3平方毫米),高效(10 pJ),并能够超高比特率的全光逻辑(1 Tb/s)。这项研究将开创一种能够在宽间隔通信波段上工作的新器件模式。除了小型化光子器件之外,这项提议将支持目前开发集成量子光学器件、光频梳和生物传感器的合作。TiO 2既便宜又可扩展,加速了其在社会中的应用。这项工作将通过以研究为基础的教育,教育和培训未来的多学科科学家和工程师。Mazurs教授与当地高中,NSF赞助的项目合作,他的研究小组中女性的高代表性将扩大代表性不足的群体的参与。最后,这项工作将广泛传播给公众使用组?的完善计划整合推广和公共教育与研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Mazur其他文献

Nonlinear optical effect of nano periodic surface patterning using coherent long-range surface plasmon polaritons excited by femtosecond laser
使用飞秒激光激发的相干长程表面等离子体激元的纳米周期性表面图案的非线性光学效应
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisashi Shimizu;Go Obara;Mitsuhiro Terakawa;Eric Mazur;Minoru Obara;Go Obara;小原 豪;小原 豪;小原 豪
  • 通讯作者:
    小原 豪
Invited paperFourier-transform heterodyne spectroscopy of liquid and solid surfaces
  • DOI:
    10.1007/s003400050137
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Doo Soo Chung;Ka Yee Lee;Eric Mazur
  • 通讯作者:
    Eric Mazur
Growth evolution of high spatial frequency LIPSS on SiC crystal surfaces
SiC 晶体表面高空间频率 LIPSS 的生长演化
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hisashi Shimizu;Go Obara;Mitsuhiro Terakawa;Eric Mazur;Minoru Obara;Go Obara
  • 通讯作者:
    Go Obara
Femtosecond laser micromachining in transparent materials
透明材料中的飞秒激光微加工
  • DOI:
    10.1038/nphoton.2008.47
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Rafael R. Gattass;Eric Mazur
  • 通讯作者:
    Eric Mazur
An adaptive moiré sensor for spectro-polarimetric hyperimaging
一种用于光谱偏振超成像的自适应莫尔传感器
  • DOI:
    10.1038/s41566-025-01650-z
  • 发表时间:
    2025-04-03
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Haoning Tang;Beicheng Lou;Fan Du;Guangqi Gao;Mingjie Zhang;Xueqi Ni;Evelyn Hu;Amir Yacoby;Yuan Cao;Shanhui Fan;Eric Mazur
  • 通讯作者:
    Eric Mazur

Eric Mazur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Mazur', 18)}}的其他基金

EAGER: Moire Cavity Single Emitter Lasers (MOCSELs)
EAGER:莫尔腔单发射激光器 (MOCSEL)
  • 批准号:
    2234513
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: Researching Team-Based Learning in High-School Physics Classes
EAGER:研究高中物理课程中的团队学习
  • 批准号:
    2333904
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Workshops: Using Physics Education Research to Improve High and Middle School Physics
研讨会:利用物理教育研究提高高中物理水平
  • 批准号:
    2025683
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: Physics of Living Systems Teacher (PoLST) Network: Increasing Student Conceptual Understanding of High School Physics
EAGER:生命系统物理教师 (PoLST) 网络:提高学生对高中物理的概念理解
  • 批准号:
    2016294
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Investigating Laser-Activation of Structured Polymer Materials for Drug Delivery
研究用于药物输送的结构化聚合物材料的激光激活
  • 批准号:
    1806434
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Strongly Extended Superradiance in Diamond Meta-Materials
金刚石超常材料中强烈扩展的超辐射度
  • 批准号:
    1720438
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
REU Site: Biomaterials Research Initiative Dedicated to Gateway Experiences
REU 网站:致力于门户体验的生物材料研究计划
  • 批准号:
    1559890
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Bringing Team-Based, Project-Based Learning to Scale
扩大基于团队、基于项目的学习
  • 批准号:
    1504664
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Integrated Photonic Chips for Generating Entangled Photon Triplets
用于生成纠缠光子三联体的集成光子芯片
  • 批准号:
    1415236
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Low-Loss, Impedance-Matched Dirac-Cone Metamaterials for Integrated Optics
用于集成光学的低损耗、阻抗匹配狄拉克锥超材料
  • 批准号:
    1360889
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
  • 批准号:
    81973434
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

FASTNET - Revolutionary hollow core low-latency fibres and cables for ultrafast next-generation optical networks
FASTNET - 用于超快下一代光网络的革命性空心低延迟光纤和电缆
  • 批准号:
    EP/X025276/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Ultrafast beam pattern modulation with spiral symmetry by spatiotemporal coupling of ultrafast optical vortex pulses and its application
超快光学涡旋脉冲时空耦合螺旋对称超快光束方向图调制及其应用
  • 批准号:
    23H01873
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metasurface-based Ultrafast Optical Metrology
基于超表面的超快光学计量
  • 批准号:
    2330802
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Novel optical detection methods for ultrafast positron emission tomography (PET)
用于超快正电子发射断层扫描 (PET) 的新型光学检测方法
  • 批准号:
    10664571
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
CAREER: Intersubband neurons for ultrafast optical neural networks
职业:超快光学神经网络的子带间神经元
  • 批准号:
    2349259
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
  • 批准号:
    10698705
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
System for the Generation of Tunable Ultrafast Optical Pulses (Phase I)
可调谐超快光脉冲生成系统(第一阶段)
  • 批准号:
    571993-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Idea to Innovation
Enhancement and denoising of ultrafast optical waveforms
超快光波形的增强和去噪
  • 批准号:
    572910-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Study of spin dynamics in topological materials using ultrafast magneto-optical effects
利用超快磁光效应研究拓扑材料中的自旋动力学
  • 批准号:
    22H01151
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ASCENT: Using Optical Frequency Comb for Ultrafast Nature-Based Computing for Machine Learning Algorithms
ASCENT:使用光学频率梳进行机器学习算法的超快基于自然的计算
  • 批准号:
    2231036
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了