ASCENT: Using Optical Frequency Comb for Ultrafast Nature-Based Computing for Machine Learning Algorithms

ASCENT:使用光学频率梳进行机器学习算法的超快基于自然的计算

基本信息

  • 批准号:
    2231036
  • 负责人:
  • 金额:
    $ 149.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Expanding the boundaries of current computing system performance calls for disruptive innovations to enable next-generation architectures beyond the traditional, so-called von Neumann paradigm. In this project, a novel photonic non-von Neumann system will be developed that pushes the envelope of nature-based computing in efficiency, capability, and applicability. Products and insights from this ASCENT collaboration have strong transformative potentials to bring nature-based computing to the state of compelling infrastructure and directly impact the gamut of application domains of machine learning (ML) in scientific discovery, industry, assistive technologies, robotics-aided healthcare, economic development, and consequent improvements in quality of life. Envisioned broader impacts will permeate to the integrated photonics community, with new functions being realized at the chip level for microcombs that can serve as key enablers in new sensing and communication platforms. Project outcomes will generate new knowledge and disruptive innovation for hybrid photonic and electronic interfaces; enable systems and architectures beyond the von Neumann paradigm, and thus impact Future Semiconductor Technology (FST) platforms -- a strategic national priority; and train next generation engineers for continued innovation in this area.While nature-based, non-von Neumann computing machines such as D-Wave’s quantum annealers are showing promise, these current machines are far from compelling due to their demanding (e.g., cryogenic) operating conditions, significant bulk, their relatively high energy consumption, and their limited applicability to combinatorial optimization problems. They will only be truly viable when they are significantly more capable and efficient than state-of-the-art von Neumann platforms in solving a non-trivial section of real-world problems. This project’s ambitious and broad vision is to bring such a machine to fruition, which can only be realized via convergent research in devices, circuits, algorithms, and ML. Nanophotonics is a promising direction to catalyze the required transformative advances, through an optical frequency microcomb that can be controlled to function as a large-scale computing system. A microcomb-based non-von Neumann system will be developed, which can accelerate a variety of ML algorithms. Building medium- to large-scale system prototypes calls for developments in physical hardware for learning systems, integration of silicon photonic circuits exploiting microcombs, and co-design of novel ML algorithms that leverage the unique features of this machine. This project will educate and train the next generation of researchers to think outside the box of their niche discipline, instill in them the excitement of crossing disciplinary boundaries, and give them first-hand appreciation of the need for convergent efforts towards making progress in engineering system applications with high societal impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
扩展当前计算系统性能的边界需要颠覆性创新,以实现超越传统的所谓冯诺依曼范式的下一代架构。在这个项目中,将开发一种新型的光子非冯·诺依曼系统,推动基于自然的计算在效率,能力和适用性方面的发展。ASCENT合作的产品和见解具有强大的变革潜力,可以将基于自然的计算带入引人注目的基础设施状态,并直接影响机器学习(ML)在科学发现,工业,辅助技术,机器人辅助医疗保健,经济发展以及随之而来的生活质量改善等领域的应用领域。设想的更广泛的影响将渗透到集成光子学社区,在芯片级实现微梳的新功能,可以作为新的传感和通信平台的关键推动者。项目成果将为混合光子和电子接口产生新的知识和颠覆性创新;使系统和架构超越冯诺依曼范式,从而影响未来半导体技术(FST)平台-国家战略优先事项;并培养下一代工程师在这一领域的持续创新。虽然以自然为基础,诸如D-Wave的量子退火机的非冯·诺依曼计算机器显示出希望,但是这些当前的机器由于它们的要求(例如,低温)操作条件、显著的体积、它们相对高的能量消耗以及它们对组合优化问题的有限适用性。只有当它们在解决现实世界问题的重要部分时比最先进的冯诺依曼平台更有能力和效率时,它们才真正可行。该项目雄心勃勃的愿景是实现这样一台机器,这只能通过设备,电路,算法和ML的融合研究来实现。纳米光子学是一个很有前途的方向,通过一个可以控制的光频微梳作为一个大规模的计算系统来催化所需的变革性进展。将开发一种基于微梳的非冯·诺依曼系统,它可以加速各种ML算法。构建中到大规模的系统原型需要开发用于学习系统的物理硬件,集成利用微梳的硅光子电路,以及利用该机器独特功能的新型ML算法的共同设计。该项目将教育和培训下一代研究人员跳出其利基学科的框框进行思考,向他们灌输跨越学科界限的兴奋,先给他们--该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supporting Energy-Based Learning with an Ising Machine Substrate: A Case Study on RBM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Huang其他文献

An Evaluation of Falls, Syncope, and Dizziness by Prolonged Ambulatory Cardiographic Monitoring in a Geriatric Institutional Setting
在老年机构环境中通过长时间动态心电图监测评估跌倒、晕厥和头晕
1550-nm wavelength-tunable HCG VCSELs
1550 nm 波长可调谐 HCG VCSEL
Ising-CF: A Pathbreaking Collaborative Filtering Method Through Efficient Ising Machine Learning
Ising-CF:通过高效 Ising 机器学习实现的开创性协同过滤方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Liu;Yunan Yang;Zhenyu Pan;Anshujit Sharma;Amit Hasan;Caiwen Ding;Ang Li;Michael Huang;Tong Geng
  • 通讯作者:
    Tong Geng
Reduction in New Onset Diabetes After Transplant (NODAT) with Erythropoietin-Stimulating Agents, a Case Control Study
  • DOI:
    10.1016/j.jcjd.2013.08.133
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tess Montada-Atin;Diana Choi;Minna Woo;Ravi Retnakaran;Michael Huang;Ramesh Prasad;Jeffrey S. Zaltzman
  • 通讯作者:
    Jeffrey S. Zaltzman
Performing Machine Learning Based Outlier Detection for Automotive Grade Products
对汽车级产品执行基于机器学习的异常值检测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. L. Yang;P. Tsao;C. W. Lin;Ross Lee;Olivia Ni;T. T. Chen;Y. Ting;C. Lai;Jason Yeh;Arnold Yang;Wayne Huang;Peng Chen;Charly Tsai;Ryan Yang;Y. S. Huang;B. Hsu;M. Z. Lee;T. H. Lee;Michael Huang;Coming Chen;L. Chu;H. Kao;N. S. Tsai;Hsinchu Taiwan MediaTek Inc.
  • 通讯作者:
    Hsinchu Taiwan MediaTek Inc.

Michael Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Huang', 18)}}的其他基金

FET: Small: Increasing Robustness, Efficacy, and Capability of CMOS-Compatible Electronic Ising Machines
FET:小型:提高 CMOS 兼容电子发射机的鲁棒性、效率和能力
  • 批准号:
    2233378
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CCF: Medium: Collaborative Research: SHF: Cascode: Supporting and Leveraging Voltage Stacking in Future Microprocessors
CCF:中:协作研究:SHF:共源共栅:支持和利用未来微处理器中的电压堆叠
  • 批准号:
    1514433
  • 财政年份:
    2015
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
XPS: EXPL: CCA: Optical Data Containers
XPS:EXPL:CCA:光学数据容器
  • 批准号:
    1533842
  • 财政年份:
    2015
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
Software Susceptibility-Driven Non-Uniform Memory Error Protection
软件敏感性驱动的非一致内存错误保护
  • 批准号:
    1255729
  • 财政年份:
    2013
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Continuing Grant
CSR: Small: System Support for SSD-Backed Recoverable Network Applications
CSR:小型:对 SSD 支持的可恢复网络应用程序的系统支持
  • 批准号:
    1217372
  • 财政年份:
    2012
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CSR: Small: Towards a Co-Designed Latency-Centric On-Chip Communication Substrate
CSR:小:迈向共同设计的以延迟为中心的片上通信基板
  • 批准号:
    1217662
  • 财政年份:
    2012
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Exploring Performance-Correctness Explicitly Decoupled Architecture
职业:理解和探索性能正确性显式解耦架构
  • 批准号:
    0747324
  • 财政年份:
    2008
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SMA: Accurate Temperature Measurement Infrastructure and Methodology for Power, Variability, and Reliability Analysis
合作研究:SMA:用于功率、可变性和可靠性分析的精确温度测量基础设施和方法
  • 批准号:
    0719790
  • 财政年份:
    2007
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Continuing Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Collaborative R&D
Reaching deeper into neuronal networks using optical physics
利用光学物理学深入研究神经元网络
  • 批准号:
    DE230100972
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Broadband background canceling using optical frequency comb and application
利用光学频率梳消除宽带背景及应用
  • 批准号:
    23H01875
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
  • 批准号:
    2236466
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
Spin-controlled optical oscillator using the spin-optical oscillation phenomenon
利用自旋光振荡现象的自旋控制光振荡器
  • 批准号:
    23K17758
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
Objective quantification of vitreous inflammation using optical coherence tomography
使用光学相干断层扫描客观量化玻璃体炎症
  • 批准号:
    10574348
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308948
  • 财政年份:
    2023
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了