Collaborative Research: Resource Allocation in Clouds: A Stochastic Modeling and Control Perspective

合作研究:云中的资源分配:随机建模和控制视角

基本信息

项目摘要

Cloud computing services (such as Amazon EC2 system, Google AppEngine, and Microsoft Azure) are becoming ubiquitous and are starting to serve as the primary source of computing power for both enterprises and personal computing applications. A cloud computing platform (or simply, a cloud) can provide a variety of resources, including infrastructure, software, and services, to users in an on-demand fashion. Compared to traditional own-and-use approaches, cloud computing services eliminate the costs of purchasing and maintaining the infrastructures for cloud users, and allow the users to dynamically scale up and down computing resources in real time based on their needs.A cloud consists of a number of machines (computers), each with a certain amount of resources (CPU, RAM, hard disk space, etc.). Each machine can be subdivided into virtual machines, where each virtual machine (VM) behaves like a small machine with a certain amount of dedicated resources. When a user submits a job to the cloud, he or she requests a certain amount of resources from the cloud and the cloud responds by creating a VM with the required resources in a machine. The resource allocation problem is to figure out how to allocate jobs to machines. Further, when several jobs are waiting for service, the cloud must also decide which job to select for service next. The goal of this project is to design resource allocation algorithms for efficient operation of the cloud, and to design pricing mechanisms to maximize the cloud service provider revenue while providing good quality of service to competing users.Intellectual Merit: The prior art in this area is to view the problem as a sequence of static problems as follows: consider the jobs that are currently waiting for service and allocate them to machines by solving a combinatorial optimization problem. Static approaches which ignore the dynamic nature of the system lead to instability. Our viewpoint here is fundamentally different: we consider the resource allocation problem as a dynamic stochastic network control problem. We will use queue length information about waiting jobs as the feedback signal to take resource allocation decisions such as routing jobs to machines and scheduling jobs on machines. To this end, we will answer a number of fundamental questions: what is the stability region of a cloud? ; is there a tradeoff between computational complexity and stability? ; how can we characterize the performance of resource allocation algorithms beyond stability? ; and how should a cloud provider price its resources for maximizing social welfare or profit? From a theoretical perspective, the novelty in the proposed approach lies in the design of control and performance analysis algorithms while taking computational complexity considerations in account.Broader Impact: The PIs teach graduate-level courses spanning networks, games, control theory, and optimization. We were among the first to incorporate network applications in control courses and control applications in networking classes. The proposed project provides new opportunities for such cross-fertilization by opening up a new application area, namely cloud computing, for control-theoretic methodologies. The PIs have a strong record of advising undergraduate students and graduate students from underrepresented groups. We will continue our recruitment efforts from such student groups for this project also. We will also use specific opportunities for this purpose as applicable, such as the NSF Alliance Graduate Education and the Professoriate (AGEP) program, which is a coordinated effort by Iowa universities to recruit minorities, and the Graduate Minority Assistantship Program (GMAP), which provides funds for recruiting minority students on research assistantships.
云计算服务(如Amazon EC2系统、Google AppEngine和Microsoft Azure)正变得无处不在,并开始成为企业和个人计算应用程序的主要计算能力来源。云计算平台(或简称云)可以按需方式向用户提供各种资源,包括基础设施、软件和服务。与传统的拥有和使用方法相比,云计算服务消除了云用户购买和维护基础设施的成本,并允许用户根据自己的需求在真实的时间内动态扩展和缩减计算资源。云由许多机器(计算机)组成,每个机器具有一定的资源(CPU、RAM、硬盘空间等)。每台机器可以细分为虚拟机,其中每个虚拟机(VM)的行为就像一台具有一定数量专用资源的小型机器。当用户向云提交作业时,他或她从云请求一定量的资源,云通过在机器中创建具有所需资源的VM来响应。资源分配问题是要弄清楚如何将作业分配给机器。此外,当多个作业正在等待服务时,云还必须决定接下来选择哪个作业进行服务。该项目的目标是设计用于云的有效操作的资源分配算法,并且设计定价机制以最大化云服务提供商的收入,同时向竞争用户提供良好的服务质量。知识产权优点:该领域的现有技术将问题视为如下的静态问题序列:考虑当前等待服务的作业,并通过解决组合优化问题将它们分配给机器。静态方法忽视了系统的动态性质,导致不稳定。我们在这里的观点是根本不同的:我们认为资源分配问题作为一个动态随机网络控制问题。我们将使用等待作业的队列长度信息作为反馈信号来进行资源分配决策,例如将作业路由到机器和在机器上调度作业。为此,我们将回答一些基本问题:云的稳定区域是什么?在计算复杂性和稳定性之间是否存在折衷?我们如何描述资源分配算法的性能超出稳定性?云计算提供商应该如何为其资源定价,以实现社会福利或利润的最大化? 从理论的角度来看,在所提出的方法的新奇在于控制和性能分析算法的设计,同时考虑到计算复杂性consideration.Broader影响:PI教授研究生水平的课程跨越网络,游戏,控制理论和优化。我们是第一批将网络应用程序纳入控制课程和网络课程中的控制应用程序。拟议的项目提供了新的机会,这种交叉施肥开辟了一个新的应用领域,即云计算,控制理论的方法。PI在为来自代表性不足群体的本科生和研究生提供咨询方面有着良好的记录。我们也将继续从这些学生团体中为这个项目进行招募。我们还将利用具体的机会,如NSF联盟研究生教育和教授(AGEP)计划,这是一个协调努力,由爱荷华州大学招募少数民族,和研究生少数民族助学金计划(GMAP),它提供资金,为招募少数民族学生的研究助学金。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rayadurgam Srikant其他文献

Rayadurgam Srikant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rayadurgam Srikant', 18)}}的其他基金

Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
  • 批准号:
    2207547
  • 财政年份:
    2022
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
  • 批准号:
    2106801
  • 财政年份:
    2021
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1718203
  • 财政年份:
    2017
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739189
  • 财政年份:
    2017
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research:Maximal Leakage and Active Receivers for Side- and Covert Channel Analysis
CIF:中:协作研究:用于旁路和隐蔽信道分析的最大泄漏和有源接收器
  • 批准号:
    1704970
  • 财政年份:
    2017
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
CIF: Medium: Anonymous Broadcasting over Networks: Fundamental Limits and Algorithms
CIF:媒介:网络匿名广播:基本限制和算法
  • 批准号:
    1705007
  • 财政年份:
    2017
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources
协作研究:资源互联系统的性能分析与设计
  • 批准号:
    1562276
  • 财政年份:
    2016
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Resource Allocation for Time-Critical Communications in Wireless Networks
合作研究:无线网络中时间关键型通信的资源分配
  • 批准号:
    1609370
  • 财政年份:
    2016
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Enabling Cellular Services over Unplanned Femto-Cell Deployments: From Theory to Implementation
NeTS:媒介:协作研究:在计划外的 Femto-Cell 部署上实现蜂窝服务:从理论到实施
  • 批准号:
    1161404
  • 财政年份:
    2012
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
  • 批准号:
    0964081
  • 财政年份:
    2010
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338395
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Resource Collaborative for Immersive Technologies (RECITE)
协作研究:沉浸式技术资源协作 (RECITE)
  • 批准号:
    2331452
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Resource Collaborative for Immersive Technologies (RECITE)
协作研究:沉浸式技术资源协作 (RECITE)
  • 批准号:
    2331455
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: The Individual Differences Corpus: A resource for testing and refining hypotheses about individual differences in speech production
协作研究:个体差异语料库:用于测试和完善有关言语产生个体差异的假设的资源
  • 批准号:
    2234096
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226901
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
  • 批准号:
    2246349
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226900
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
D-ISN/Collaborative Research: Mitigating the Harm of Fentanyl through Holistic Demand/Supply Interventions and Equitable Resource Allocations
D-ISN/合作研究:通过整体需求/供应干预和公平资源分配减轻芬太尼的危害
  • 批准号:
    2240359
  • 财政年份:
    2023
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了