CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
基本信息
- 批准号:1739189
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The confluence of two powerful global trends, (1) the rapid growth of cloud computing and data centers with skyrocketing energy consumption, and (2) the accelerating penetration of renewable energy sources, is creating both severe challenges and tremendous opportunities. The fast growing renewable generation puts forth great operational challenges since they will cause large, frequent, and random fluctuations in supply. Data centers, on the other hand, offer large flexible loads in the grid. Leveraging this flexibility, this project will develop fundamental theories and algorithms for sustainable data centers with a dual goal of improving data center energy efficiency and accelerating the integration of renewables in the grid via data center demand response (DR) and workload management. Specifically, the research findings will shed light on data center demand response while maintaining their performance, which will help data centers to decide how to participate in power market programs. Further, the success of data center demand response will help increase renewable energy integration and reduce the carbon footprint of data centers, contributing to global sustainability. The PIs will leverage fruitful collaboration to eventually bring the research to bear on ongoing industry standardization and development efforts. The PIs teach courses spanning networks, games, smart grid and optimization, and are strongly committed to promoting diversity by providing research opportunities to underrepresented students. Built on the PIs expertise on data centers and the smart grid, this project takes an interdisciplinary approach to develop fundamental theories and algorithms for sustainable data centers. The research tasks are organized under two well-coordinated thrusts, namely agile data center DR and adaptive workload management. The strategies and decisions of data center DR will be made based on the workload management algorithms that balance quality of service and energy efficiency and determine the supply functions. The workload management algorithms will optimize quality of service under the electric load constraints imposed by DR accordingly. This project will make three unique contributions: (1) new market programs with strategic participation of data centers in DR, instead of passive price takers, (2) fundamental understanding of the impacts of power network constraints on data center DR and new distributed algorithms for solving optimal power flow with stochastic renewable supplies, and (3) high-performance dynamic server provisioning and load balancing algorithms for large scale data centers under time-varying and stochastic electric load constraints and on-site renewable generation.
云计算和数据中心的快速增长与能源消耗的急剧上升,以及可再生能源的加速渗透,这两大全球趋势的融合既带来了严峻的挑战,也带来了巨大的机遇。快速增长的可再生能源发电带来了巨大的运营挑战,因为它们将导致供应的大规模、频繁和随机波动。另一方面,数据中心在网格中提供大量灵活的负载。利用这种灵活性,该项目将开发可持续数据中心的基本理论和算法,其双重目标是提高数据中心能源效率,并通过数据中心需求响应(DR)和工作负载管理加速可再生能源在电网中的整合。具体而言,研究结果将阐明数据中心在保持其性能的同时需求响应,这将有助于数据中心决定如何参与电力市场计划。此外,数据中心需求响应的成功将有助于增加可再生能源的整合,减少数据中心的碳足迹,为全球可持续发展做出贡献。pi将利用富有成效的合作,最终将研究成果用于正在进行的行业标准化和开发工作。pi教授的课程涵盖网络、游戏、智能电网和优化,并致力于通过为代表性不足的学生提供研究机会来促进多样性。该项目以PIs在数据中心和智能电网方面的专业知识为基础,采用跨学科方法开发可持续数据中心的基本理论和算法。研究任务组织在两个协调良好的重点下,即敏捷数据中心容灾和自适应工作负载管理。数据中心容灾的策略和决策将基于平衡服务质量和能源效率并确定供应功能的工作负载管理算法。负载管理算法将在容灾带来的电力负荷约束下优化服务质量。这个项目将做出三个独特的贡献:(1)数据中心战略性参与容灾的新市场方案,而不是被动的价格接受者;(2)对电网约束对数据中心容灾影响的基本认识,以及解决随机可再生能源最优潮流的新分布式算法;(3)针对时变随机电力负荷约束和现场可再生发电的大型数据中心高性能动态服务器配置和负载均衡算法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Delay Asymptotics and Bounds for Multi-Task Parallel Jobs
多任务并行作业的延迟渐近和界限
- DOI:10.1145/3308897.3308901
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wang, Weina;Harchol-Balter, Mor;Jiang, Haotian;Scheller-Wolf, Alan;Srikant, R.
- 通讯作者:Srikant, R.
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Harsh Gupta;R. Srikant;Lei Ying
- 通讯作者:Harsh Gupta;R. Srikant;Lei Ying
Mean-Field Analysis of Coding Versus Replication in Large Data Storage Systems
大数据存储系统中编码与复制的平均场分析
- DOI:10.1145/3159172
- 发表时间:2018
- 期刊:
- 影响因子:0.6
- 作者:Li, Bin;Ramamoorthy, Aditya;Srikant, R.
- 通讯作者:Srikant, R.
Optimal Load Balancing with Locality Constraints
具有局部性约束的最佳负载平衡
- DOI:10.1145/3428330
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Weng, Wentao;Zhou, Xingyu;Srikant, R.
- 通讯作者:Srikant, R.
Heavy-Traffic Delay Insensitivity in Connection-Level Models of Data Transfer with Proportionally Fair Bandwidth Sharing
具有按比例公平带宽共享的连接级数据传输模型中的大流量延迟不敏感
- DOI:10.1145/3199524.3199565
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wang, Weina;Maguluri, Siva Theja;Srikant, R.;Ying, Lei
- 通讯作者:Ying, Lei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rayadurgam Srikant其他文献
Rayadurgam Srikant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rayadurgam Srikant', 18)}}的其他基金
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207547 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
- 批准号:
2106801 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
- 批准号:
1718203 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF:Medium:Collaborative Research:Maximal Leakage and Active Receivers for Side- and Covert Channel Analysis
CIF:中:协作研究:用于旁路和隐蔽信道分析的最大泄漏和有源接收器
- 批准号:
1704970 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CIF: Medium: Anonymous Broadcasting over Networks: Fundamental Limits and Algorithms
CIF:媒介:网络匿名广播:基本限制和算法
- 批准号:
1705007 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Resource Allocation for Time-Critical Communications in Wireless Networks
合作研究:无线网络中时间关键型通信的资源分配
- 批准号:
1609370 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources
协作研究:资源互联系统的性能分析与设计
- 批准号:
1562276 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Enabling Cellular Services over Unplanned Femto-Cell Deployments: From Theory to Implementation
NeTS:媒介:协作研究:在计划外的 Femto-Cell 部署上实现蜂窝服务:从理论到实施
- 批准号:
1161404 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Resource Allocation in Clouds: A Stochastic Modeling and Control Perspective
合作研究:云中的资源分配:随机建模和控制视角
- 批准号:
1202065 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
- 批准号:
0964081 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant