Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications

合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用

基本信息

项目摘要

The confluence of cloud computing, machine learning/artificial intelligence and Internet-of-things/sensor technology is transforming society in unprecedented ways, and leading to innovations in autonomous systems, healthcare, bioinformatics, social networks, online and in-store retail industry, and education. Breakthrough developments in these widely disparate fields use machine learning and cloud computing with millions of servers to aid data-driven decision-making using terabytes of data, some in real-time and some offline. At the heart of these large-scale machine-learning and cloud-computing applications are stochastic dynamical systems of enormous scale. Analyzing and optimizing such systems are often difficult because of the size and the unknown statistical description of the underlying randomness in such systems. This project is aimed at understanding the performance of large stochastic systems by developing a new analytical method that synthesizes tools from probability, machine learning, and stochastic networks, and will lead to new advances in the design of fast and more efficient computing systems for training large-scale machine-learning models, while yielding new fundamental insights into deep reinforcement-learning algorithms. The project will contribute to education and workforce development by integrating the theories and algorithms into the graduate-level courses and by involving undergraduate and students from underrepresented groups in the research. This project develops a new analytical method for obtaining non-asymptotic bounds using Lyapunov drift analysis. The method combines drift analysis with ideas from Stein's method, dimensionality reduction from state-space collapse and properties of reproducing kernel Hilbert spaces, as appropriate. The project leverages three key ideas to advance the state-of-the-art: Stein's method to choose appropriate Lyapunov functions to study mean-field limits, identifying lower-order models using the notion of state-space collapse, and using moment-generating functions or characteristic functions as test functions to obtain higher-moment bounds on the performance of stochastic systems. During the course of this project, the method is applied to two applications: (i) robust and ultra-low latency computing networks for supporting complex machine-learning jobs with concurrent and dependent tasks, which are processed in heterogeneous server farms; and (ii) deep reinforcement-learning for deriving new performance bounds for neural temporal-difference learning and for the Actor-Critic algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算、机器学习/人工智能和物联网/传感器技术的融合正在以前所未有的方式改变社会,并导致自主系统、医疗保健、生物信息学、社交网络、在线和店内零售业以及教育领域的创新。这些领域的突破性发展使用机器学习和云计算,使用数百万台服务器来帮助数据驱动的决策,这些数据使用TB级的数据,有些是实时的,有些是离线的。这些大规模机器学习和云计算应用的核心是巨大规模的随机动力系统。分析和优化这样的系统往往是困难的,因为在这样的系统中的潜在的随机性的大小和未知的统计描述。该项目旨在通过开发一种新的分析方法来理解大型随机系统的性能,该方法综合了概率,机器学习和随机网络的工具,并将在设计用于训练大型机器学习模型的快速,更有效的计算系统方面取得新的进展,同时产生对深度学习算法的新的基本见解。该项目将通过将理论和算法整合到研究生课程中,并让本科生和代表性不足的群体的学生参与研究,为教育和劳动力发展做出贡献。本计画发展一种新的分析方法,利用李雅普诺夫漂移分析来获得非渐近界。该方法结合了漂移分析与Stein方法的思想,从状态空间塌陷降维和再生核希尔伯特空间的属性,适当的。该项目利用三个关键思想来推进最先进的技术:Stein的方法来选择适当的Lyapunov函数来研究平均场极限,使用状态空间崩溃的概念来识别低阶模型,并使用矩生成函数或特征函数作为测试函数来获得随机系统性能的高阶矩界。 在该项目的过程中,该方法被应用于两个应用:(i)鲁棒和超低延迟的计算网络,用于支持复杂的机器学习作业,这些作业具有并发和相关任务,这些任务在异构服务器群中处理;以及(ii)深度学习,用于导出神经时间差学习和Actor的新性能界限。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On The Convergence Of Policy Iteration-Based Reinforcement Learning With Monte Carlo Policy Evaluation
  • DOI:
    10.48550/arxiv.2301.09709
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Winnicki;R. Srikant
  • 通讯作者:
    Anna Winnicki;R. Srikant
Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits
协作多智能体异构多臂强盗
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chawla, R.;Vial, D.;Shakkottai, S.;Srikant, R.
  • 通讯作者:
    Srikant, R.
Modified Policy Iteration for Exponential Cost Risk Sensitive MDPs
指数成本风险敏感 MDP 的修改策略迭代
Robust Multi-Agent Bandits Over Undirected Graphs
无向图上的鲁棒多智能体强盗
Learning While Scheduling in Multi-Server Systems With Unknown Statistics: MaxWeight with Discounted UCB
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixi Yang;R. Srikant;Lei Ying
  • 通讯作者:
    Zixi Yang;R. Srikant;Lei Ying
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rayadurgam Srikant其他文献

Rayadurgam Srikant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rayadurgam Srikant', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
  • 批准号:
    2106801
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Fast Online Machine Learning Algorithms for Wireless Networks
NeTS:小型:协作研究:无线网络的快速在线机器学习算法
  • 批准号:
    1718203
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Demand Response & Workload Management for Data Centers with Increased Renewable Penetration
CPS:媒介:协作研究:需求响应
  • 批准号:
    1739189
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF:Medium:Collaborative Research:Maximal Leakage and Active Receivers for Side- and Covert Channel Analysis
CIF:中:协作研究:用于旁路和隐蔽信道分析的最大泄漏和有源接收器
  • 批准号:
    1704970
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF: Medium: Anonymous Broadcasting over Networks: Fundamental Limits and Algorithms
CIF:媒介:网络匿名广播:基本限制和算法
  • 批准号:
    1705007
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resource Allocation for Time-Critical Communications in Wireless Networks
合作研究:无线网络中时间关键型通信的资源分配
  • 批准号:
    1609370
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Performance Analysis and Design of Systems with Interconnected Resources
协作研究:资源互联系统的性能分析与设计
  • 批准号:
    1562276
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Enabling Cellular Services over Unplanned Femto-Cell Deployments: From Theory to Implementation
NeTS:媒介:协作研究:在计划外的 Femto-Cell 部署上实现蜂窝服务:从理论到实施
  • 批准号:
    1161404
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Resource Allocation in Clouds: A Stochastic Modeling and Control Perspective
合作研究:云中的资源分配:随机建模和控制视角
  • 批准号:
    1202065
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Modeling, Design and Emulation of P2P Real-Time Streaming Networks
NeTS:媒介:协作研究:P2P 实时流网络的建模、设计和仿真
  • 批准号:
    0964081
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了