Lattice Polytopes with a View Toward Algebraic Geometry
从代数几何的角度看晶格多面体
基本信息
- 批准号:1203162
- 负责人:
- 金额:$ 9.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI pursues the systematic study of lattice polytopes with an emphasis on applications in neighboring areas, in particular, in toric geometry. The first project focuses on conjectures and relations to algebraic geometry and geometry of numbers that arise in the study of Ehrhart polynomials, which count the number of lattice points in integer multiples of lattice polytopes. Recently, an Ehrhart-theoretic invariant (the degree of the h*-polynomial) has opened up a refined way of looking at lattice polytopes without interior lattice points.The PI investigates the relations to other invariants such as the degree of the A-discriminant, the spectral value or the nef value of a polarized toric variety and explores possible generalizations beyond the realm of lattice polytopes. The goal of the second project is to enhance our understanding of reflexive and Gorenstein polytopes that play a crucial role in the Batyrev-Borisov construction of families of mirror-symmetric Calabi-Yau varieties. Here, one invariant of specific interest is the stringy E-polynomial of a Gorenstein polytope. A significant part of this research is also concerned with obtaining classification results in order to check conjectures and to search for counterexamples.The theory of lattice polytopes lies at the intersection of algebraic, convex and discrete geometry, optimization and the geometry of numbers. The definition of a lattice polytope is extraordinarily simple: it is the convex hull of finitely many points in a lattice.Because of their elementary nature, these convex-geometric objects are ubiquitous in various disguises throughout pure and applied mathematics, and they provide fertile ground for interdisciplinary research. Most prominently, lattice polytopes provide an explicit, combinatorial approach to higher-dimensional algebraic varieties, called toric varieties. This interaction has proven to be successful for algebraic geometry as well as for polyhedral combinatorics and has unexpected applications in other areas, notably in string theory. The PI studies open questions on lattice polytopes motivated from these different viewpoints. The fascination of lattice polytopes lies also in the fact that many problems can be formulated in an elementary way and are well suited for computational approaches which makes the area attractive to students. One component of this project is to finish writing a book on lattice polytopes with Christian Haase and Andreas Paffenholz that will make it as easy as possible for students to get into contact with current research topics.
PI 致力于晶格多面体的系统研究,重点是邻近领域的应用,特别是在环面几何中。第一个项目重点关注埃尔哈特多项式研究中出现的猜想以及与代数几何和数字几何的关系,该多项式计算格子多面体整数倍中的格点数量。最近,Ehrhart 理论不变量(h* 多项式的次数)开辟了一种在没有内部格点的情况下观察晶格多面体的精确方法。PI 研究了与其他不变量的关系,例如 A 判别式的次数、偏振环面簇的光谱值或 nef 值,并探索了超出晶格多面体领域的可能推广。第二个项目的目标是增强我们对反身多胞体和 Gorenstein 多胞体的理解,它们在镜像对称 Calabi-Yau 品种家族的 Batyrev-Borisov 构建中发挥着至关重要的作用。这里,一个特别令人感兴趣的不变量是 Gorenstein 多面体的弦 E 多项式。这项研究的一个重要部分还涉及获得分类结果,以检查猜想并寻找反例。 格子多胞体理论位于代数、凸和离散几何、最优化和数几何的交叉点。晶格多胞体的定义非常简单:它是晶格中有限多个点的凸包。由于其基本性质,这些凸几何对象以各种形式在纯数学和应用数学中无处不在,它们为跨学科研究提供了肥沃的基础。最突出的是,晶格多面体为高维代数簇(称为环面簇)提供了一种明确的组合方法。这种相互作用已被证明对于代数几何和多面体组合学是成功的,并且在其他领域,特别是在弦理论中具有意想不到的应用。 PI 研究从这些不同的观点出发,提出了关于晶格多胞体的开放性问题。晶格多胞体的魅力还在于许多问题可以用基本的方式表达,并且非常适合计算方法,这使得该领域对学生有吸引力。该项目的一个组成部分是与 Christian Haase 和 Andreas Paffenholz 一起完成一本关于晶格多胞体的书,这将使学生尽可能容易地接触当前的研究主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Duncan其他文献
Liquid and Dry Swabs for Culture- and PCR-Based Detection of Colonization with Methicillin-Resistant Staphylococcus aureus during Admission Screening
入院筛查期间使用液体和干拭子进行基于培养和 PCR 的耐甲氧西林金黄色葡萄球菌定植检测
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
N. V. Allmen;K. Gorzelniak;Oliver Liesenfeld;M. Njoya;John Duncan;Elizabeth M. Marlowe;T. Hartel;A. Knaust;B. Hoppe;M. Walter - 通讯作者:
M. Walter
Intelligence tests predict brain response to demanding task events
智力测试可以预测大脑对高要求任务事件的反应。
- DOI:
10.1038/nn0303-207 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:20.000
- 作者:
John Duncan - 通讯作者:
John Duncan
Hermitians in matrix algebras with operator norm and associated Lie algebras
具有算子范数和相关李代数的矩阵代数中的埃尔米特式
- DOI:
10.1016/j.laa.2023.11.009 - 发表时间:
2023 - 期刊:
- 影响因子:1.1
- 作者:
John Duncan;Colin M. McGregor - 通讯作者:
Colin M. McGregor
The death of neoliberalism? UK responses to the pandemic
新自由主义之死?
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.4
- 作者:
John Duncan - 通讯作者:
John Duncan
Long-term population changes in the Giant Quiver Tree, Aloe pillansii in the Richtersveld, South Africa
- DOI:
10.1007/s11258-005-9085-0 - 发表时间:
2005-12-21 - 期刊:
- 影响因子:1.700
- 作者:
John Duncan;Timm Hoffman;Rick Rohde;Elsabè Powell; Howard Hendricks - 通讯作者:
Howard Hendricks
John Duncan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Duncan', 18)}}的其他基金
Cooperating brain systems in attention and control
大脑系统在注意力和控制方面的合作
- 批准号:
MC_UU_00030/7 - 财政年份:2022
- 资助金额:
$ 9.04万 - 项目类别:
Intramural
Mathematical Sciences: Conference of Determinantal Ideals and Representation Theory; April 18-20, 1991, University of Arkansas
数学科学:行列式理想与表示论会议;
- 批准号:
9021022 - 财政年份:1991
- 资助金额:
$ 9.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Operators and Function Theory: The Role of de Branges's Spaces; April 13-15, 1989; Fayetteville, Arkansas
数学科学:算子和函数论会议:德布兰奇空间的作用;
- 批准号:
8819384 - 财政年份:1988
- 资助金额:
$ 9.04万 - 项目类别:
Standard Grant
相似海外基金
Geometric Combinatorics in Polytopes and Spheres
多面体和球体中的几何组合
- 批准号:
2246739 - 财政年份:2023
- 资助金额:
$ 9.04万 - 项目类别:
Standard Grant
The relationship between the polarized structure of toric varieties and convex polytopes
复曲面品种的偏振结构与凸多胞体之间的关系
- 批准号:
23K03075 - 财政年份:2023
- 资助金额:
$ 9.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Workshop on Symmetries in Graphs, Maps, and Polytopes 2022
图表、地图和多面体对称性研讨会 2022
- 批准号:
2203776 - 财政年份:2022
- 资助金额:
$ 9.04万 - 项目类别:
Standard Grant
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 9.04万 - 项目类别:
Continuing Grant
Classical simulation of quantum computation via quasiprobability representations, Lambda polytopes, and mapping to fermions
通过准概率表示、Lambda 多面体和映射到费米子进行量子计算的经典模拟
- 批准号:
577736-2022 - 财政年份:2022
- 资助金额:
$ 9.04万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
- 批准号:
21KK0043 - 财政年份:2021
- 资助金额:
$ 9.04万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Classification of Uniform Polytopes
均匀多面体的分类
- 批准号:
562637-2021 - 财政年份:2021
- 资助金额:
$ 9.04万 - 项目类别:
University Undergraduate Student Research Awards
Geometric and Algebraic Approach to Polytopes
多面体的几何和代数方法
- 批准号:
RGPIN-2016-05354 - 财政年份:2021
- 资助金额:
$ 9.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and Algebraic Approach to Polytopes
多面体的几何和代数方法
- 批准号:
RGPIN-2016-05354 - 财政年份:2020
- 资助金额:
$ 9.04万 - 项目类别:
Discovery Grants Program - Individual
Interactions between toric varieties and convex polytopes
复曲面变体与凸多面体之间的相互作用
- 批准号:
20K03562 - 财政年份:2020
- 资助金额:
$ 9.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




