Groups in Geometry and Topology
几何和拓扑中的群
基本信息
- 批准号:1205312
- 负责人:
- 金额:$ 31.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most directions of the research supported by this grant revolve around geometry of group actions on various spaces and geometric structures on manifolds, as well as geometry of buildings. In more details, research conducted by M. Kapovich concerns: (1) Geometry of buildings with applications to representation theory. Kapovich intends to continue his study of the geometry of the moduli spaces of polygonal linkages in symmetric spaces and buildings in relation to the algebraic groups. Part of this study is establishing tropical structures on Euclidean buildings. (2) Kleinian groups in higher dimensions: Kapovich will study finiteness properties of higher-dimensional Kleinian groups. (3) Fundamental groups of complex-projective varieties: Kapovich will study fundamental groups of irreducible complex-projective varieties whose singularities are normal crossings. (4) Kapovich will study embeddings of Right-angled Artin Groups in the group of diffeomorphisms of the circle. (5) Semihyperbolicity of Teichmuller space: Kapovich will study coarse nonpositive curvature properties of Teichmuller space. (6) Kapovich will study classification of fundamental groups of closed 4-dimensional manifolds M with trivial 2nd homotopy group.The goal of this research is to understand better interaction between geometry and groups. Groups appear naturally as symmetries of natural geometric objects. Simple examples of such symmetries come from wall-paper tilings (where geometry is Euclidean) or tilings appearing is some of the Escher pictures (hyperbolic geometry). Furthermore, groups appear as symmetries of geometric objects of physical nature, from elementary particles to the entire universe (treated as a geometric object). Algebra (group theory) allows one to encode the underlying symmetries, and, conversely, geometry allows one to approach successfully purely algebraic problems. One of the examples of such interaction of seemingly different mathematical fields is project (3), which aims to apply groups of symmetries of 3-dimensional hyperbolic space to complex-algebraic geometry (the latter deals with geometry of solution spaces of systems of polynomial equations with complex variables).
这项资助支持的研究的大部分方向围绕几何群体行动的各种空间和几何结构的流形,以及几何建筑物。更详细地说,由M。Kapovich关注:(1)建筑物的几何与应用表示论。卡波维奇打算继续他的研究几何的模空间的多边形联系在对称空间和建筑物的关系代数群。这项研究的一部分是建立在欧几里得建筑热带结构。(2)更高维度的克莱因群:卡波维奇将研究更高维度克莱因群的有限性。(3)基本群体的复杂投射品种:卡波维奇将研究基本群体的不可约复杂投射品种的奇异性是正常的交叉。(4)卡波维奇将研究嵌入直角阿廷集团集团的迪#64256;eomorphisms的循环。(5)Teichmuller空间的半双曲性:Kapovich将研究Teichmuller空间的粗糙非正曲率性质。(6)Kapovich将研究具有平凡第二同伦群的闭四维流形M的基本群的分类。这项研究的目标是更好地理解几何和群之间的相互作用。组自然地表现为自然几何对象的对称性。这种对称性的简单例子来自墙纸拼贴(其中几何是欧几里德)或拼贴出现在一些更复杂的图片(双曲几何)。此外,群表现为物理性质的几何对象的对称性,从基本粒子到整个宇宙(被视为几何对象)。代数(群论)允许人们对基本的对称性进行编码,相反,几何允许人们成功地处理纯粹的代数问题。这种看似不同的数学领域之间的相互作用的一个例子是项目(3),其目的是将三维双曲空间的对称群应用于复代数几何(后者涉及复变量多项式方程组的解空间的几何)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kapovich其他文献
Polygons in Buildings and their Refined Side Lengths
- DOI:
10.1007/s00039-009-0026-2 - 发表时间:
2009-11-03 - 期刊:
- 影响因子:2.500
- 作者:
Michael Kapovich;Bernhard Leeb;John J. Millson - 通讯作者:
John J. Millson
Statement : Some of my research since July 2003
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich - 通讯作者:
Michael Kapovich
Stability inequalities and universal Schubert calculus of rank 2
- DOI:
10.1007/s00031-011-9161-6 - 发表时间:
2011-09-09 - 期刊:
- 影响因子:0.400
- 作者:
Arkady Berenstein;Michael Kapovich - 通讯作者:
Michael Kapovich
Noncoherence of some lattices in Isom ( H
Isom 中某些格子的非相干性 ( H
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich;Leonid Potyagailo;Ernest Vinberg;Heiner Zieschang;Michael Kapovich;Leonid Potyagailo;Ernest Vinberg - 通讯作者:
Ernest Vinberg
Ideal triangles in Euclidean buildings and branching to Levi subgroups
- DOI:
10.1016/j.jalgebra.2012.04.001 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Thomas J. Haines;Michael Kapovich;John J. Millson - 通讯作者:
John J. Millson
Michael Kapovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kapovich', 18)}}的其他基金
Conference ``Algebraic Geometry and Hyperbolic Geometry --- New Connections"
会议《代数几何与双曲几何——新连接》
- 批准号:
1300954 - 财政年份:2013
- 资助金额:
$ 31.39万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554349 - 财政年份:2006
- 资助金额:
$ 31.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Structures on Low Dimentional Manifolds
数学科学:低维流形上的几何结构
- 批准号:
9306140 - 财政年份:1993
- 资助金额:
$ 31.39万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 31.39万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 31.39万 - 项目类别:
Continuing Grant
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2020
- 资助金额:
$ 31.39万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2019
- 资助金额:
$ 31.39万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2018
- 资助金额:
$ 31.39万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2017
- 资助金额:
$ 31.39万 - 项目类别:
Discovery Grants Program - Individual
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
- 批准号:
1748107 - 财政年份:2017
- 资助金额:
$ 31.39万 - 项目类别:
Standard Grant
Geometry of discrete groups and its applications to 3-dimensional topology
离散群的几何及其在三维拓扑中的应用
- 批准号:
17H02843 - 财政年份:2017
- 资助金额:
$ 31.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2016
- 资助金额:
$ 31.39万 - 项目类别:
Discovery Grants Program - Individual