Mathematical Sciences: Geometric Structures on Low Dimentional Manifolds
数学科学:低维流形上的几何结构
基本信息
- 批准号:9306140
- 负责人:
- 金额:$ 3.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1996-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research entails the geometry and topology of hyperbolic structures on 3-dimensional manifolds. In particular, metrics of non-positive curvature will be studied and the fundamental groups of these manifolds will be related to those of other classes of manifolds. The techniques exploited may have potential applications to other branches of mathematics.
该研究涉及三维流形上双曲结构的几何和拓扑。特别地,我们将研究非正曲率的度量,这些流形的基本群将与其他类型的流形的基本群联系起来。所开发的技术可能在数学的其他分支中有潜在的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kapovich其他文献
Polygons in Buildings and their Refined Side Lengths
- DOI:
10.1007/s00039-009-0026-2 - 发表时间:
2009-11-03 - 期刊:
- 影响因子:2.500
- 作者:
Michael Kapovich;Bernhard Leeb;John J. Millson - 通讯作者:
John J. Millson
Statement : Some of my research since July 2003
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich - 通讯作者:
Michael Kapovich
Stability inequalities and universal Schubert calculus of rank 2
- DOI:
10.1007/s00031-011-9161-6 - 发表时间:
2011-09-09 - 期刊:
- 影响因子:0.400
- 作者:
Arkady Berenstein;Michael Kapovich - 通讯作者:
Michael Kapovich
Noncoherence of some lattices in Isom ( H
Isom 中某些格子的非相干性 ( H
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich;Leonid Potyagailo;Ernest Vinberg;Heiner Zieschang;Michael Kapovich;Leonid Potyagailo;Ernest Vinberg - 通讯作者:
Ernest Vinberg
Ideal triangles in Euclidean buildings and branching to Levi subgroups
- DOI:
10.1016/j.jalgebra.2012.04.001 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Thomas J. Haines;Michael Kapovich;John J. Millson - 通讯作者:
John J. Millson
Michael Kapovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kapovich', 18)}}的其他基金
Conference ``Algebraic Geometry and Hyperbolic Geometry --- New Connections"
会议《代数几何与双曲几何——新连接》
- 批准号:
1300954 - 财政年份:2013
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554349 - 财政年份:2006
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
- 批准号:
0758262 - 财政年份:2008
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Research Conference in Mathematical Sciences on Geometric Graph Theory, May 28 2002-June 1 2002, UNT
NSF/CBMS 几何图论数学科学区域研究会议,2002 年 5 月 28 日-2002 年 6 月 1 日,UNT
- 批准号:
0121729 - 财政年份:2001
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Stabilized Geometric Integrators with Applications to Molecular Simulation
数学科学:稳定几何积分器及其在分子模拟中的应用
- 批准号:
9627330 - 财政年份:1997
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: On Some Geometric Constructions and On the Properties of the Kerr Black Hole
数学科学:关于一些几何结构和克尔黑洞的性质
- 批准号:
9704338 - 财政年份:1997
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
- 批准号:
9706875 - 财政年份:1997
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
$ 3.36万 - 项目类别:
Continuing grant
Mathematical Sciences: Weak Solutions of Geometric Evolution Equations
数学科学:几何演化方程的弱解
- 批准号:
9626405 - 财政年份:1996
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant