Groups in Geometry and Topology
几何和拓扑中的群
基本信息
- 批准号:1604241
- 负责人:
- 金额:$ 19.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1604241, Principal Investigator: Michael KapovichGroups appear naturally as symmetries of geometric and physical objects, like wall-patterns, minerals, snowflakes and, ultimately, the entire universe. This project studies relation between algebraic properties of groups and geometry of spaces for which groups appear as symmetries. Another part of the project deals with geometry of mechanical devices such as bar-and-joint mechanisms and gear trains. The project will involve rigorous mathematical definitions of such devices and analysis of possible motion spaces (configuration spaces) of the devices.This project is a continuation of the principal investigator's research of previous years in the areas of geometry, topology, geometric group theory and theory of mechanical devices. The subjects of the planned research revolve around geometry of group actions on various spaces, geometry of buildings, interactions of algebraic geometry, hyperbolic geometry and geometric group theory. Another part of the project deals with geometry of mechanical devices such as gear trains. The goal here is to give mathematical definition of such devices, generalizing the definition of a mechanical linkage as a finite metric graph and proving a universality theorem for configuration spaces of these devices, namely that any algebraic partial differential relation can be realized as the configuration space of some device.
AbstractAward:DMS 1604241,首席研究员:Michael Kapovich群自然地表现为几何和物理对象的对称性,如墙壁图案,矿物,雪花,最终是整个宇宙。 本计画研究群的代数性质与群呈现对称性的空间几何之间的关系。该项目的另一部分涉及机械设备的几何形状,如杆和关节机构和齿轮系。该项目将涉及此类装置的严格数学定义和装置可能的运动空间(配置空间)的分析。该项目是首席研究员前几年在几何学、拓扑学、几何群论和机械装置理论领域研究的延续。计划研究的主题围绕几何群体行动的各种空间,建筑物的几何,代数几何,双曲几何和几何群论的相互作用。该项目的另一部分涉及齿轮系等机械设备的几何形状。 这里的目标是给这样的设备的数学定义,推广的定义作为一个有限的度量图的机械连杆和证明的普遍性定理,这些设备的配置空间,即任何代数偏微分关系可以实现为一些设备的配置空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kapovich其他文献
Polygons in Buildings and their Refined Side Lengths
- DOI:
10.1007/s00039-009-0026-2 - 发表时间:
2009-11-03 - 期刊:
- 影响因子:2.500
- 作者:
Michael Kapovich;Bernhard Leeb;John J. Millson - 通讯作者:
John J. Millson
Statement : Some of my research since July 2003
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich - 通讯作者:
Michael Kapovich
Stability inequalities and universal Schubert calculus of rank 2
- DOI:
10.1007/s00031-011-9161-6 - 发表时间:
2011-09-09 - 期刊:
- 影响因子:0.400
- 作者:
Arkady Berenstein;Michael Kapovich - 通讯作者:
Michael Kapovich
Noncoherence of some lattices in Isom ( H
Isom 中某些格子的非相干性 ( H
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Michael Kapovich;Leonid Potyagailo;Ernest Vinberg;Heiner Zieschang;Michael Kapovich;Leonid Potyagailo;Ernest Vinberg - 通讯作者:
Ernest Vinberg
Ideal triangles in Euclidean buildings and branching to Levi subgroups
- DOI:
10.1016/j.jalgebra.2012.04.001 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:
- 作者:
Thomas J. Haines;Michael Kapovich;John J. Millson - 通讯作者:
John J. Millson
Michael Kapovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kapovich', 18)}}的其他基金
Conference ``Algebraic Geometry and Hyperbolic Geometry --- New Connections"
会议《代数几何与双曲几何——新连接》
- 批准号:
1300954 - 财政年份:2013
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554349 - 财政年份:2006
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Structures on Low Dimentional Manifolds
数学科学:低维流形上的几何结构
- 批准号:
9306140 - 财政年份:1993
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2020
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2019
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2018
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2017
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
- 批准号:
1748107 - 财政年份:2017
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Geometry of discrete groups and its applications to 3-dimensional topology
离散群的几何及其在三维拓扑中的应用
- 批准号:
17H02843 - 财政年份:2017
- 资助金额:
$ 19.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
- 批准号:
RGPIN-2016-03780 - 财政年份:2016
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Geometry and Topology of the Heisenberg Groups
海森堡群的几何和拓扑
- 批准号:
1500647 - 财政年份:2015
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant