Mirror Symmetry and the Microlocal Theory of Sheaves

镜像对称和滑轮的微局域理论

基本信息

  • 批准号:
    1206520
  • 负责人:
  • 金额:
    $ 10.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

The proposed research program provides an approach to Kontsevich?s homological mirror symmetry conjectures (HMS) for the large class of mirror pairs of toric hypersurfaces discovered by Batyrev and Borisov. The approach uses constructible sheaves, especially the microlocal theory of sheaves developed by Kashiwara and Schapira, in a fundamental way, and leads to new constructions in sheaf theory. At the large volume limit of the symplectic side of HMS, the project aims to exhibit an explicit combinatorial skeleton over which the Fukaya category is expected to localize -- i.e. form a sheaf of dg categories. Another aim is to show that these spaces, and more general singular Lagrangians and Legendrians, all carry a canonical sheaf of dg categories, the "Kashiwara-Schapira sheaf." It is defined by microlocal sheaf techniques, and amenable to computations. Thus the conjectural "sheaf of Fukaya categories" can be defined and computed even in advance of a rigorous symplectic geometry construction, which is expected to be equivalent. A third aim is to show that the global category of the Kashiwara-Schapira sheaf is equivelent to the category of perfect complexes on the large complex structure limit of the complex side of HMS.The proposed research program provides an approach to Kontsevich?s homological mirror symmetry conjectures (HMS) for the large class of mirror pairs of toric ypersurfaces discovered by Batyrev and Borisov. The approach uses constructible sheaves, especially the microlocal theory of sheaves developed by Kashiwara and Schapira, in a fundamental way, and leads to new constructions in sheaf theory. At the large volume limit of the symplectic side of HMS, the project aims to exhibit an explicit combinatorial skeleton over which the Fukaya category is expected to localize -- i.e. form a sheaf of dg categories. Another aim is to show that these spaces, and more general singular Lagrangians and Legendrians, all carry a canonical sheaf of dg categories, the "Kashiwara-Schapira sheaf." It is defined by microlocal sheaf techniques, and amenable to computations. Thus the conjectural "sheaf of Fukaya categories" can be defined and computed even in advance of a rigorous symplectic geometry construction, which is expected to be equivalent. A third aim is to show that the global category of the Kashiwara-Schapira sheaf is equivelent to the category of perfect complexes on the large complex structure limit of the complex side of HMS.
所提出的研究程序为BATYREV和BURISOV发现的一大类环面超曲面的镜对提供了一种康采维奇-S同调镜对称猜想的方法。该方法从根本上使用了可构造层,特别是Kashiwara和Schapira发展的层的微域理论,并导致了层理论的新结构。在HMS辛边的大体积限制下,该项目旨在展示一个明确的组合骨架,Fukaya范畴有望在其上局部化--即形成dg范畴的一束。另一个目的是证明这些空间,以及更一般的奇异拉格朗日和勒让德里亚空间,都带有dg范畴的典范簇,即“Kashiwara-Schapira Sheaf”。它是由微局部束技术定义的,并且易于计算。因此,猜想的“Fukaya范畴层”甚至可以在严格的辛几何构造之前被定义和计算,这被认为是等价的。第三个目的是证明Kashiwara-Schapira簇的整体范畴等价于HMS复边的大复数结构极限上的完全复数范畴。该研究方案为BATYREV和BURISOV发现的一大类环面镜面对的Kontsevich?S同调镜面对称猜想提供了一种方法。该方法从根本上使用了可构造层,特别是Kashiwara和Schapira发展的层的微域理论,并导致了层理论的新结构。在HMS辛边的大体积限制下,该项目旨在展示一个明确的组合骨架,Fukaya范畴有望在其上局部化--即形成dg范畴的一束。另一个目的是证明这些空间,以及更一般的奇异拉格朗日和勒让德里亚空间,都带有dg范畴的典范簇,即“Kashiwara-Schapira Sheaf”。它是由微局部束技术定义的,并且易于计算。因此,猜想的“Fukaya范畴层”甚至可以在严格的辛几何构造之前被定义和计算,这被认为是等价的。第三个目的是证明Kashiwara-Schapira簇的整体范畴等价于HMS复边的大复数结构极限上的完全复数范畴。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Treumann其他文献

Complex K-theory of mirror pairs
镜像对的复 K 理论
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Treumann
  • 通讯作者:
    David Treumann
T-Duality and Equivariant Homological Mirror Symmetry for Toric Varieties
环面簇的 T 对偶性和等变同调镜像对称
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bohan Fang;Chiu;David Treumann;E. Zaslow
  • 通讯作者:
    E. Zaslow
Smith theory and geometric Hecke algebras
史密斯理论和几何赫克代数
  • DOI:
    10.1007/s00208-019-01860-1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    David Treumann
  • 通讯作者:
    David Treumann
A topological approach to induction theorems in Springer theory
斯普林格理论中归纳定理的拓扑方法
  • DOI:
    10.1090/s1088-4165-09-00342-2
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Treumann
  • 通讯作者:
    David Treumann
Stacks similar to the stack of perverse sheaves
堆叠类似于反常滑轮的堆叠
  • DOI:
    10.1090/s0002-9947-2010-04958-x
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Treumann
  • 通讯作者:
    David Treumann

David Treumann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Treumann', 18)}}的其他基金

Applications of Microlocal Sheaves of Spectra and K-Theory
谱与K理论的微局域滑轮的应用
  • 批准号:
    1811971
  • 财政年份:
    2018
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Lagrangian Surfaces, Legendrian Knots, and the Microlocal Theory of Sheaves
拉格朗日曲面、传奇结和滑轮的微局域理论
  • 批准号:
    1510444
  • 财政年份:
    2015
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Continuing Grant
Mirror Symmetry and the Microlocal Theory of Sheaves
镜像对称和滑轮的微局域理论
  • 批准号:
    1314010
  • 财政年份:
    2012
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于级联环形微腔PT-Symmetry效应的芯片级全光开关
  • 批准号:
    61675185
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
  • 批准号:
    2350239
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
  • 批准号:
    MR/Y034007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Fellowship
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
  • 批准号:
    23H01091
  • 财政年份:
    2023
  • 资助金额:
    $ 10.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了