Mirror Symmetry and the Microlocal Theory of Sheaves
镜像对称和滑轮的微局域理论
基本信息
- 批准号:1314010
- 负责人:
- 金额:$ 10.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research program provides an approach to Kontsevich?s homological mirror symmetry conjectures (HMS) for the large class of mirror pairs of toric hypersurfaces discovered by Batyrev and Borisov. The approach uses constructible sheaves, especially the microlocal theory of sheaves developed by Kashiwara and Schapira, in a fundamental way, and leads to new constructions in sheaf theory. At the large volume limit of the symplectic side of HMS, the project aims to exhibit an explicit combinatorial skeleton over which the Fukaya category is expected to localize -- i.e. form a sheaf of dg categories. Another aim is to show that these spaces, and more general singular Lagrangians and Legendrians, all carry a canonical sheaf of dg categories, the "Kashiwara-Schapira sheaf." It is defined by microlocal sheaf techniques, and amenable to computations. Thus the conjectural "sheaf of Fukaya categories" can be defined and computed even in advance of a rigorous symplectic geometry construction, which is expected to be equivalent. A third aim is to show that the global category of the Kashiwara-Schapira sheaf is equivelent to the category of perfect complexes on the large complex structure limit of the complex side of HMS.The proposed research program provides an approach to Kontsevich?s homological mirror symmetry conjectures (HMS) for the large class of mirror pairs of toric ypersurfaces discovered by Batyrev and Borisov. The approach uses constructible sheaves, especially the microlocal theory of sheaves developed by Kashiwara and Schapira, in a fundamental way, and leads to new constructions in sheaf theory. At the large volume limit of the symplectic side of HMS, the project aims to exhibit an explicit combinatorial skeleton over which the Fukaya category is expected to localize -- i.e. form a sheaf of dg categories. Another aim is to show that these spaces, and more general singular Lagrangians and Legendrians, all carry a canonical sheaf of dg categories, the "Kashiwara-Schapira sheaf." It is defined by microlocal sheaf techniques, and amenable to computations. Thus the conjectural "sheaf of Fukaya categories" can be defined and computed even in advance of a rigorous symplectic geometry construction, which is expected to be equivalent. A third aim is to show that the global category of the Kashiwara-Schapira sheaf is equivelent to the category of perfect complexes on the large complex structure limit of the complex side of HMS.
拟议的研究计划提供了一种方法Kontsevich?的同调镜像对称结构(HMS)的大类镜对的环面超曲面的Batyrev和Borisov发现。该方法使用可构造层,特别是由Kashiwara和Schapira开发的层的微局部理论,在一个基本的方式,并导致新的结构层理论。 在HMS的辛侧的大体积限制下,该项目的目标是展示一个明确的组合骨架,在该骨架上,福谷类别有望局部化-即形成一个dg类别层。 另一个目的是证明这些空间,以及更一般的奇异拉格朗日和勒让德空间,都带有一个dg范畴的规范层,即“柏原-夏皮拉层”。“它是由微局部层技术定义的,并且适合于计算。 因此,即使在严格的辛几何构造之前,也可以定义和计算拓扑的“福谷范畴层”,这被认为是等价的。 第三个目的是表明,全球范畴的柏原Schapira层是等价的完美的复杂的大复杂的结构限制HMS的复杂的一面的范畴。拟议的研究计划提供了一种方法Kontsevich?对Batyrev和Borisov发现的复曲面镜像对的同调镜像对称结构(HMS)进行了研究。该方法使用可构造层,特别是由Kashiwara和Schapira开发的层的微局部理论,在一个基本的方式,并导致新的结构层理论。 在HMS的辛侧的大体积限制下,该项目的目标是展示一个明确的组合骨架,在该骨架上,福谷类别有望局部化-即形成一个dg类别层。 另一个目的是证明这些空间,以及更一般的奇异拉格朗日和勒让德空间,都带有一个dg范畴的规范层,即“柏原-夏皮拉层”。“它是由微局部层技术定义的,并且适合于计算。 因此,即使在严格的辛几何构造之前,也可以定义和计算拓扑的“福谷范畴层”,这被认为是等价的。 第三个目的是证明柏原-夏皮拉层的全局范畴等价于HMS复杂侧的大复杂结构极限上的完美复合物范畴。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Treumann其他文献
Complex K-theory of mirror pairs
镜像对的复 K 理论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
David Treumann - 通讯作者:
David Treumann
T-Duality and Equivariant Homological Mirror Symmetry for Toric Varieties
环面簇的 T 对偶性和等变同调镜像对称
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Bohan Fang;Chiu;David Treumann;E. Zaslow - 通讯作者:
E. Zaslow
Smith theory and geometric Hecke algebras
史密斯理论和几何赫克代数
- DOI:
10.1007/s00208-019-01860-1 - 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
David Treumann - 通讯作者:
David Treumann
A topological approach to induction theorems in Springer theory
斯普林格理论中归纳定理的拓扑方法
- DOI:
10.1090/s1088-4165-09-00342-2 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
David Treumann - 通讯作者:
David Treumann
Stacks similar to the stack of perverse sheaves
堆叠类似于反常滑轮的堆叠
- DOI:
10.1090/s0002-9947-2010-04958-x - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
David Treumann - 通讯作者:
David Treumann
David Treumann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Treumann', 18)}}的其他基金
Applications of Microlocal Sheaves of Spectra and K-Theory
谱与K理论的微局域滑轮的应用
- 批准号:
1811971 - 财政年份:2018
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Lagrangian Surfaces, Legendrian Knots, and the Microlocal Theory of Sheaves
拉格朗日曲面、传奇结和滑轮的微局域理论
- 批准号:
1510444 - 财政年份:2015
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Mirror Symmetry and the Microlocal Theory of Sheaves
镜像对称和滑轮的微局域理论
- 批准号:
1206520 - 财政年份:2012
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
相似国自然基金
基于级联环形微腔PT-Symmetry效应的芯片级全光开关
- 批准号:61675185
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Fellowship
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
- 批准号:
2350239 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
- 批准号:
2345644 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
- 批准号:
EP/Y033574/1 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Research Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344490 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Bulk-edge correspondence and symmetry of strongly correlated topological pump
强相关拓扑泵的体边对应和对称性
- 批准号:
23H01091 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




