Lie Groups and Their Discrete Subgroups
李群及其离散子群
基本信息
- 批准号:1206999
- 负责人:
- 金额:$ 25.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator (John Millson) proposes three main lines of research all within the general framework of reductive algebraic groups and geometry. In the first and most important main line, Nicolas Bergeron and Colette Moeglin (both of the University of Paris) and the PI will try to generalize to the unitary groups SU(p,q) their result that the Poincare duals of classes carried by totally geodesic cycles in the locally symmetric spaces of simple arithmetic type associated to the orthogonal groups SO(p,q) span the cohomology groups of low degree and special refined Hodge type, see "Hodge type theorems for arithmetic manifolds associated to orthogonal groups." Also, the PI proposes generalizing to the unitary case his earlier joint work (comprising five papers) with Jens Funke (from Durham University) on the boundary values of special cohomology classes associated to orthogonal groups. The second main line deals with the ring R of projective invariants of n ordered points on complex projective m space and the equivariant symplectic geometry of the corresponding moduli spaces and their toric degenerations. All of the completed work referred to above was supported by the NSF grant DMS-0907446. The third main line is an attempt to generalize to Kac Moody Lie algebras the PI's previous work with Michael Kapovich (and in parts with Thomas Haines, Shrawan Kumar, and Bernhard Leeb) dealing with the generalized triangle inequalities and related (saturation) problems from reductive Lie algebras. This project was the subject of the PI's earlier FRG grant DMS-0554254 with Prakash Belkale, Thomas Haines, Michael Kapovich and Shrawan Kumar. The problem looks difficult but there is a test example that will indicate whether the earlier theory will generalize. That example is affine SL(2). The PI proposes three main lines of research all within the general framework of reductive algebraic groups and geometry. The first part of the proposal deals with a remarkable and unexpected interaction between geometry, analysis and two different areas of representation theory (the oscillator/Weil representation and the work of James Arthur on the Selberg trace formula based in part on ideas of Robert Langlands). This work should have applications to number theory along the lines described by Steven Kudla in his 2002 International Congress of Mathematicians talk. The second and third parts of the proposal are motivated in part because they are related to much studied problems going back to the beginning of invariant theory in the late nineteenth century. The earlier work of the PI on the third part deals with basic problems in representation theory, e.g. decomposing tensor products and branching formulas which are much used in a number of disciplines. The current proposal outlines an extension of this work to other settings. All the above projects are in collaboration with other mathematicians from within the USA or abroad. In the last four years, the PI has had collaborations with ten mathematicians continuing a history of extensive collaboration (over fifty joint papers).
首席研究员(约翰·米尔森)提出了三个主要研究方向,全部在还原代数群和几何的总体框架内。 在第一个也是最重要的主线中,Nicolas Bergeron 和 Colette Moeglin(均来自巴黎大学)和 PI 将尝试将他们的结果推广到酉群 SU(p,q),即与正交群 SO(p,q) 相关的简单算术类型的局部对称空间中的完全测地线循环所承载的类的庞加莱对偶跨越低次和特殊精炼的上同调群 Hodge 类型,请参阅“与正交群相关的算术流形的 Hodge 类型定理”。 此外,PI 建议将他早期与 Jens Funke(来自杜伦大学)关于与正交群相关的特殊上同调类的边界值的联合工作(包括五篇论文)推广到酉情况。 第二条主线讨论复射影 m 空间上 n 个有序点的射影不变量的环 R 以及相应模空间的等变辛几何及其环面简并。上述所有已完成的工作均得到 NSF 拨款 DMS-0907446 的支持。 第三条主线是尝试将 PI 之前与 Michael Kapovich(以及部分与 Thomas Haines、Shrawan Kumar 和 Bernhard Leeb)合作处理广义三角不等式和还原李代数相关(饱和)问题的工作推广到 Kac Moody 李代数。该项目是 PI 早期与 Prakash Belkale、Thomas Haines、Michael Kapovich 和 Shrawan Kumar 共同获得的 FRG 拨款 DMS-0554254 的主题。 这个问题看起来很困难,但有一个测试示例可以表明早期的理论是否可以推广。该示例是仿射 SL(2)。 PI 提出了三个主要研究方向,均在还原代数群和几何的总体框架内。该提案的第一部分涉及几何、分析和表示理论的两个不同领域(振子/韦尔表示和詹姆斯·阿瑟在部分基于罗伯特·朗兰兹的思想的塞尔伯格迹公式上的工作)之间的显着且意想不到的相互作用。这项工作应该按照 Steven Kudla 在 2002 年国际数学家大会演讲中描述的思路应用于数论。该提案的第二部分和第三部分的部分动机是因为它们与可追溯到十九世纪末不变理论之初的许多研究问题相关。 PI 的早期工作第三部分涉及表示论中的基本问题,例如分解张量积和分支公式在许多学科中广泛使用。当前的提案概述了这项工作到其他设置的扩展。 所有上述项目都是与美国或国外的其他数学家合作的。在过去四年中,PI 与十位数学家进行了合作,延续了广泛合作的历史(超过 50 篇联合论文)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Millson其他文献
A description of the outer automorphism of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>S</mi><mn>6</mn></msub></math>, and the invariants of six points in projective space
- DOI:
10.1016/j.jcta.2008.01.004 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howard;John Millson;Andrew Snowden;Ravi Vakil - 通讯作者:
Ravi Vakil
John Millson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Millson', 18)}}的其他基金
Cycles and the Cohomology of Locally Symmetric Spaces
局部对称空间的循环和上同调
- 批准号:
1518657 - 财政年份:2015
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Lie Group and Their Discrete Subgroups
李群及其离散子群
- 批准号:
0907446 - 财政年份:2009
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554254 - 财政年份:2006
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Configuration Spaces on n-gon Linkages
n 边形链接上的配置空间
- 批准号:
0104006 - 财政年份:2001
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Representations of the Fundamental Group and Connections with Deformation Theory, Geometry and Integrable Systems
基本群的表示以及与变形理论、几何和可积系统的联系
- 批准号:
9803520 - 财政年份:1998
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Geometry and Euclidean Geometry
数学科学:辛几何和欧几里得几何
- 批准号:
9504134 - 财政年份:1995
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformation Problems from Geometry and Algebra
数学科学:几何和代数的变形问题
- 批准号:
9205154 - 财政年份:1992
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic Geometry and Arithmetic Groups
数学科学:解析几何和算术群
- 批准号:
9002116 - 财政年份:1990
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
相似海外基金
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 25.95万 - 项目类别:
Studentship
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 25.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 25.95万 - 项目类别:
Standard Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
1265695 - 财政年份:2013
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Lie groups, Lie algebras, and their applications
李群、李代数及其应用
- 批准号:
448786-2013 - 财政年份:2013
- 资助金额:
$ 25.95万 - 项目类别:
University Undergraduate Student Research Awards
Intercampus Workshop: Lie groups, Lie algebras, and their representations
校园间研讨会:李群、李代数及其表示
- 批准号:
1343609 - 财政年份:2013
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2013
- 资助金额:
$ 25.95万 - 项目类别:
Discovery Grants Program - Individual
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 25.95万 - 项目类别:
Continuing Grant
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
- 批准号:
227312-2009 - 财政年份:2012
- 资助金额:
$ 25.95万 - 项目类别:
Discovery Grants Program - Individual