Cycles and the Cohomology of Locally Symmetric Spaces
局部对称空间的循环和上同调
基本信息
- 批准号:1518657
- 负责人:
- 金额:$ 18.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is concerned with proving "Hodge type theorems for arithmetic manifolds." The Hodge conjecture is one of the most important unsolved problems in mathematics -- it is one of the seven Millenium Problems of the Clay Mathematical Institute, which offers a one million dollar prize for the solution of each of these problems. The Hodge conjecture has been verified only in special cases. The PI and collaborators proved the Hodge conjecture for a fundamental new infinite class of examples. This work led to the formulation and proof of a new refined version of the Hodge conjecture in further special cases for a large and important family of spaces. It is clear that still more general Hodge conjectures should hold for most of the cases that occur in the area common to geometry and group theory. It is the goal of this project to formulate and prove such refined versions of the Hodge conjecture. The investigator will continue work on the relation between cycles in arithmetic quotients of the symmetric spaces associated to the orthogonal groups and unitary groups and cohomology classes on these spaces constructed using the Weil representation. The investigator and collaborators have studied the use of a stabilized trace formula to prove that in low degrees the Poincare duals of a special class of totally-geodesic submanifolds of codimension k called "special cycles" together with the Euler/Chern class) span a canonical summand of the k-th cohomology of the above spaces called the special (refined) Hodge summand. In the unitary case, for complex hyperbolic space, they obtained proofs of the Hodge and Tate conjectures for the standard arithmetic quotients of the complex unit ball in degrees away from the middle dimensions. The goal of the this project is to formulate and prove refined versions of the Hodge conjecture for all locally symmetric spaces (not necessarily Hermitian symmetric) associated to unitary groups, orthogonal groups, and possibly symplectic groups.
本研究计画系关于算术流形之霍奇型定理之证明。“霍奇猜想是数学中最重要的未解决问题之一-它是克莱数学研究所的七个千年问题之一,其中每个问题的解决方案都提供了100万美元的奖金。霍奇猜想只在特殊情况下得到了验证。PI和合作者证明了霍奇猜想的一个基本的新的无限类的例子。这项工作导致制定和证明一个新的改进版本的霍奇猜想在进一步的特殊情况下,一个大的和重要的家庭空间。显然,更一般的霍奇定理应该适用于几何学和群论共同领域中发生的大多数情况。这是这个项目的目标,制定和证明这样的改进版本的霍奇猜想。调查员将继续工作之间的关系循环算术代数的对称空间相关联的正交群和酉群和上同调类在这些空间构造使用韦尔表示。 研究者和合作者研究了稳定迹公式的使用,以证明在低次下,一类特殊的余维k的全测地子流形(称为“特殊圈”和Euler/Chern类)的Poincare和跨越上述空间的k次上同调的典型和项,称为特殊(精化)Hodge和项。在幺正情形下,对于复双曲空间,他们证明了复单位球的标准算术乘积在远离中维的度数上的霍奇和泰特定理。该项目的目标是制定和证明霍奇猜想的改进版本,适用于与酉群,正交群和可能的辛群相关的所有局部对称空间(不一定是埃尔米特对称)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Millson其他文献
A description of the outer automorphism of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>S</mi><mn>6</mn></msub></math>, and the invariants of six points in projective space
- DOI:
10.1016/j.jcta.2008.01.004 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howard;John Millson;Andrew Snowden;Ravi Vakil - 通讯作者:
Ravi Vakil
John Millson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Millson', 18)}}的其他基金
Lie Groups and Their Discrete Subgroups
李群及其离散子群
- 批准号:
1206999 - 财政年份:2012
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Lie Group and Their Discrete Subgroups
李群及其离散子群
- 批准号:
0907446 - 财政年份:2009
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554254 - 财政年份:2006
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Configuration Spaces on n-gon Linkages
n 边形链接上的配置空间
- 批准号:
0104006 - 财政年份:2001
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Representations of the Fundamental Group and Connections with Deformation Theory, Geometry and Integrable Systems
基本群的表示以及与变形理论、几何和可积系统的联系
- 批准号:
9803520 - 财政年份:1998
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Geometry and Euclidean Geometry
数学科学:辛几何和欧几里得几何
- 批准号:
9504134 - 财政年份:1995
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformation Problems from Geometry and Algebra
数学科学:几何和代数的变形问题
- 批准号:
9205154 - 财政年份:1992
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic Geometry and Arithmetic Groups
数学科学:解析几何和算术群
- 批准号:
9002116 - 财政年份:1990
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
- 批准号:
2883661 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Studentship
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Research Grant
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Continuing Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Standard Grant
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
- 批准号:
23K03077 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 18.03万 - 项目类别:
Discovery Grants Program - Individual