Configuration Spaces on n-gon Linkages
n 边形链接上的配置空间
基本信息
- 批准号:0104006
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0104006John J. MillsonMillson and his collaborators will explore the geometric properties of configuration spaces of n-gon linkages in Lie algebras, symmetric spaces, compact Lie groups and Euclidean buildings beginning with the question of deciding when these moduli spaces are nonempty (finding the generalizedtriangle inequalities). In addition they will study the finer structure of these moduli spaces. In particular, they will study commutative and noncommutative Hamiltonian systems of differential equations on these spaces and use the quantizations of these systems to obtain results about the representation theory of compact Lie groups and of the Artin groups of Lie type. Millson and B.Leeb have obtained necessary and sufficient conditions for the moduli spaces of n-gon linkages in Lie algebras to be nonempty generalizing well-known results of Klyachko for sl(n,C). Millson, M.Kapovich and B.Leeb have found necessary and sufficient conditions for the moduli spaces of n-gon linkages in Euclidean buildings and symmetric spaces to be nonempty. In some cases, Millson and H.Flaschka have constructed (commutative) integrable Hamiltonian systems on these spaces but the flows are not periodic. For applications to the representation theory of compact Lie groups it is critical to find the associated "action variables," i.e. find Hamiltonians with periodic flows which are functions of the original Poisson-commuting Hamiltonians. Millson and Toledano-Laredo have constructed representations of Artin groups of Lie type by quantizing certain noncommutative Hamiltonian systems. They hope to construct the trigonometric analogues of their quantum systems. The results just mentioned may be found at http://www.math.umd.edu/~jjm. Millson's work begins with one of the first theorems of high-school geometry - the theorem that if two triangles have the same set of side lengths then they are congruent. The analogue for quadrilaterals is clearly false: one can change a square into a rhombus without changing the sidelengths. So one is led to try to parametrize the set of all planar n-gons with the same side lengths. From there one is led to a favorite theme of nineteenth century mathematics, the study of planar linkages (systems ofrods and hinges). In the nineteenth century such a study was of immense practical significance - the problem was to convert linear motion (of a piston rod) to circular motion (turn a wheel) by a linkage. The problem wassolved by a French naval officer, Peaucellier. It turns out that from the modern point of view the nineteenth century work is insufficiently precise. Millson and Kapovich have corrected the errors and written up a proof of a result (often attributed to Thurston) that, given any smooth manifold M, there is a planar linkage whose configuration space is diffeomorphic to a disjoint union of a number of copies of M. This result will appear inthe journal "Topology". The above work on planar linkages led to a study of n-gon linkages in space. This theory is enormously richer, connecting with symplectic geometry, integrable Hamiltonian systems and representation theory.The analogous theory in spherical and hyperbolic three-space and their generalizations (compact Lie groups and the symmetric spaces of their complexifications) appears to connect up with some of the newest objects in geometry and algebra, for example Poisson Lie groups and quantum groups.
DMS-0104006 John J. Millson Millson和他的合作者将探索李代数、对称空间、紧李群和欧几里得建筑中n边形连杆的构型空间的几何性质,从确定这些模空间何时非空的问题开始(找到广义三角形不等式)。此外,他们将研究这些模空间的更精细结构。特别是,他们将研究交换和非交换的哈密顿系统的微分方程在这些空间和使用这些系统的量子化,以获得有关的代表性理论的紧凑李群和阿廷集团的李型。Millson和B.Leeb得到了李代数中n边形连杆的模空间为非空的充要条件,推广了Klyachko关于sl(n,C)的著名结果. Millson,M.Kapovich和B.Leeb已经找到了欧氏建筑物和对称空间中n边形连杆的模空间非空的充要条件。在某些情况下,Millson和H.Flaschka已经在这些空间上构造了(交换的)可积Hamilton系统,但流不是周期的。对于紧致李群表示论的应用,关键是找到相关的“作用变量”,即找到具有周期流的哈密顿算子,这些哈密顿算子是原始泊松交换哈密顿算子的函数。Millson和Toledano-Laredo通过量子化某些非对易Hamilton系统,构造了李型Artin群的表示。他们希望构造出量子系统的三角类似物。刚才提到的结果可以在http://www.math.umd.edu/~jjm上找到。 米尔森的工作开始于高中几何的第一个定理之一-定理,如果两个三角形有相同的一套边长,然后他们是全等的。 四边形的类比显然是错误的:一个人可以把一个正方形变成一个菱形而不改变边长。因此,人们试图参数化所有具有相同边长的平面n维的集合。从那里人们被引导到十九世纪数学的一个最喜欢的主题,平面连杆机构(杆和铰链系统)的研究。 在19世纪这样的研究是巨大的实际意义-问题是转换直线运动(活塞杆)的圆周运动(转一个轮子)的联系。法国海军军官波塞利耶解决了这个问题。 事实证明,从现代的观点来看,世纪的作品不够精确。 米尔森和卡波维奇已经纠正了错误,并写了一个结果的证明(通常归因于瑟斯顿),即给定任何光滑流形M,存在一个平面连杆,其位形空间是M的若干副本的不交并集的同构。 这一结果将发表在“拓扑学”杂志上。 平面连杆机构的上述工作导致了空间n边形连杆机构的研究。 这个理论非常丰富,与辛几何,可积哈密顿系统和表示论有关。球面和双曲三空间中的类似理论及其推广(紧李群及其复化的对称空间)似乎与几何和代数中的一些最新对象有关,例如泊松李群和量子群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Millson其他文献
A description of the outer automorphism of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>S</mi><mn>6</mn></msub></math>, and the invariants of six points in projective space
- DOI:
10.1016/j.jcta.2008.01.004 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howard;John Millson;Andrew Snowden;Ravi Vakil - 通讯作者:
Ravi Vakil
John Millson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Millson', 18)}}的其他基金
Cycles and the Cohomology of Locally Symmetric Spaces
局部对称空间的循环和上同调
- 批准号:
1518657 - 财政年份:2015
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Lie Groups and Their Discrete Subgroups
李群及其离散子群
- 批准号:
1206999 - 财政年份:2012
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Lie Group and Their Discrete Subgroups
李群及其离散子群
- 批准号:
0907446 - 财政年份:2009
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Eigenvalue and Saturation Problems for Reductive Groups
合作研究:FRG:还原群的特征值和饱和问题
- 批准号:
0554254 - 财政年份:2006
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Representations of the Fundamental Group and Connections with Deformation Theory, Geometry and Integrable Systems
基本群的表示以及与变形理论、几何和可积系统的联系
- 批准号:
9803520 - 财政年份:1998
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Geometry and Euclidean Geometry
数学科学:辛几何和欧几里得几何
- 批准号:
9504134 - 财政年份:1995
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Mathematical Sciences: Deformation Problems from Geometry and Algebra
数学科学:几何和代数的变形问题
- 批准号:
9205154 - 财政年份:1992
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic Geometry and Arithmetic Groups
数学科学:解析几何和算术群
- 批准号:
9002116 - 财政年份:1990
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
相似海外基金
INSPIRE- Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE-交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10106857 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
EU-Funded
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Salary Programs
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Research Grant
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
- 批准号:
2341731 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Research Grant
INSPIRE - Intersectional Spaces of Participation: Inclusive, Resilient, Embedded
INSPIRE - 交叉参与空间:包容性、弹性、嵌入式
- 批准号:
10091666 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
EU-Funded
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Fellowship
Spread through air spaces (STAS) の分子学的特性と発現機序の解明
阐明空气传播(STAS)的分子特征和表达机制
- 批准号:
24K19434 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Other Rome: Centring People and Spaces of Maintenance
另一个罗马:以人员和维护空间为中心
- 批准号:
AH/Y000277/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Fellowship
Designing safe and biodiverse green spaces in prisons
在监狱中设计安全和生物多样性的绿色空间
- 批准号:
AH/Z505523/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Research Grant