Asymptotic theory for stochastic processes via martingale methods

通过鞅方法的随机过程渐近理论

基本信息

  • 批准号:
    1208237
  • 负责人:
  • 金额:
    $ 15.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

An important technique for establishing limit theorems for dependent sequences is to approximate them with well understood structures, such as martingales. Stationary martingale approximation is a subfield of stochastic processes that received a lot of attention in the last decade. Motivated by the study of asymptotic properties of nonstationary processes and also of stationary processes that cannot be approximated by stationary martingales, we shall develop the theory of nonstationary martingale approximations, which unites all the parts of the project. The new method will exploit blocking techniques to break the dependence and a new type of martingale construction based on blocks of variables. We shall also provide maximal inequalities, including Rosenthal-type inequalities, which are important for obtaining rates of convergence in the asymptotic results and facilitate the study of a stochastic process by approximating it, in the almost sure sense, with sums of independent normal random variables. These tools are fundamental for obtaining new projective criteria for stochastic processes that insure asymptotic results, including the conditional functional central limit theorem, limit theorems started at a point, moderate and large deviation results as well as exact representations for the tail probabilities of sums of random variables. These types of asymptotic behaviors are at the heart of probability theory with important applications to statistics and other applied fields. The proposed project is expected to provide new mathematical ideas and techniques that will shed new light on several difficult open problems for stochastic processes and will impact other fields of research as follows: The limit theorems started at a point are useful to analyze random walks in a random environment. They are also of interest to researchers working in statistical mechanics, physics, and will lead to new discoveries for some interesting intermittent maps that recently came to the attention of specialists in dynamical systems. The results will be applicable to families of Metropolis-Hastings algorithms that are essential, for instance, for Bayesian statistics. The exact asymptotic representation for the tail probabilities will facilitate the estimations of deviation probabilities that occur in a natural way in many applied areas, so for instance, in problems of insurance in the context of large claim insurance, in risk theory and finance. The results will be disseminated broadly through publications in top rated journals and presentations in national and international conferences. They will also be integrated with training of graduate students, presented in weekly seminars, and will enter the curriculum of a course on limit theory for stochastic processes. Related questions are actively being studied by several groups of researchers, in the US and in Europe, and the proposed project will contribute to strengthen international scientific exchange and collaborations.
建立相依序列极限定理的一个重要技术是用人们熟知的结构来逼近它们,例如令。平稳鞅逼近是随机过程的一个子域,在过去的十年里受到了广泛的关注。出于对非平稳过程和平稳过程的渐近性质的研究,我们将发展非平稳鞅逼近理论,它统一了项目的所有部分。新方法将利用分块技术来打破依赖关系,并基于变量块构造一种新型的鞅结构。我们还将提供极大不等式,包括Rosenthal型不等式,它们对于获得渐近结果的收敛速度是重要的,并通过用独立正态随机变量和来逼近几乎必然意义上的随机过程来促进随机过程的研究。这些工具是获得确保渐近结果的随机过程的新射影准则的基础,包括条件泛函中心极限定理、在一点开始的极限定理、中等偏差和大偏差结果以及随机变量和的尾概率的精确表示。这些类型的渐近行为是概率论的核心,在统计学和其他应用领域有着重要的应用。该项目有望提供新的数学思想和技术,为解决随机过程的几个难题提供新的思路和技术,并将对其他研究领域产生影响,如:从一点开始的极限定理对于分析随机环境中的随机游动是有用的。它们也引起了从事统计力学和物理学工作的研究人员的兴趣,并将导致一些有趣的间歇性地图的新发现,这些地图最近引起了动力系统专家的注意。这些结果将适用于Metropolis-Hastings算法家族,这些算法对于贝叶斯统计来说是必不可少的。尾概率的精确渐近表示将有助于估计在许多应用领域中以自然方式发生的偏差概率,例如,在大索赔保险的背景下的保险问题,在风险理论和金融中。将通过在排名靠前的期刊上发表出版物以及在国内和国际会议上发表演讲来广泛传播这一成果。他们还将与研究生的培训相结合,在每周的研讨会上提出,并将进入随机过程极限理论课程的课程。美国和欧洲的几个研究小组正在积极研究相关问题,拟议中的项目将有助于加强国际科学交流与合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magda Peligrad其他文献

ON THE BLOCKWISE BOOTSTRAP FOR EMPIRICAL PROCESSES FOR STATIONARY SEQUENCES
  • DOI:
    10.1214/aop/1022855654
  • 发表时间:
    1998-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
Functional central limit theorem via nonstationary projective conditions
通过非平稳射影条件的函数中心极限定理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florence Merlevede;Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the local limit theorems for linear sequences of lower psi-mixing Markov chains
低psi混合马尔可夫链线性序列的局部极限定理
A criterion for tightness for a class of dependent random variables
  • DOI:
    10.1007/bf01896693
  • 发表时间:
    1982-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the Weak Invariance Principle for Stationary Sequences under Projective Criteria
  • DOI:
    10.1007/s10959-006-0029-y
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Florence Merlevède;Magda Peligrad
  • 通讯作者:
    Magda Peligrad

Magda Peligrad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magda Peligrad', 18)}}的其他基金

Asymptotic Results for Stochastic Processes via New Projective Methods
通过新投影方法得出随机过程的渐近结果
  • 批准号:
    2054598
  • 财政年份:
    2021
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Limit Theorems for Stochastic Processes and Random Fields via Projective Conditions
通过射影条件的随机过程和随机场的极限定理
  • 批准号:
    1811373
  • 财政年份:
    2018
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Spectral analysis of stochastic processes and random fields
随机过程和随机场的谱分析
  • 批准号:
    1512936
  • 财政年份:
    2015
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Dependent Sequences of Random Variables and Applications
数学科学:随机变量相关序列的渐近行为及其应用
  • 批准号:
    9304010
  • 财政年份:
    1993
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behaviour of Sequences of Random Variables and Applications
数学科学:随机变量序列的渐近行为及其应用
  • 批准号:
    9007986
  • 财政年份:
    1991
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Asymptotic Behavior of Strong Mixing Sequences of Random Variables and Applications
随机变量强混合序列的渐近行为及其应用
  • 批准号:
    8905614
  • 财政年份:
    1989
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequenes of Random Variables and Applications
数学科学:随机变量混合序列的渐近行为及其应用
  • 批准号:
    8702759
  • 财政年份:
    1987
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequences of Random Variables
数学科学:随机变量混合序列的渐近行为
  • 批准号:
    8503016
  • 财政年份:
    1985
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
  • 批准号:
    22KJ1172
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
  • 批准号:
    23H03354
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了