Limit Theorems for Stochastic Processes and Random Fields via Projective Conditions

通过射影条件的随机过程和随机场的极限定理

基本信息

  • 批准号:
    1811373
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Many statistical analyses in the social and natural sciences don't take proper account of shifts of distributions. This variability can be seen in the shift in the distribution in stock market, in the income distribution, in the electoral map, in the levels of a river or of the waves. All the data arising from these phenomena are considered to be non-stationary. Non-stationary data, as a rule, cannot be easily modeled and studied. The results obtained by many of the existing models may be spurious. They may indicate a relationship between two variables, where one does not exist. In order to apply consistent, reliable results, the rigorous mathematical tools have to be constructed for non-stationary data. This research has double scope. First, it will contribute to a better understanding and modeling of the non-stationarity phenomena and, in addition, will build new, reliable tools for their forecast and their long term behavior.An important technique for establishing limit theorems for nonstationary sequences and random fields is to approximate them with well understood structures, such as martingales and ortho-martingales. Motivated by the study of asymptotic properties of nonstationary evolutions the theory of nonstationary martingale approximations will be developed. This theory is fundamental for obtaining new projective criteria for nonstationary stochastic processes and for random fields that ensure maximal inequalities and asymptotic results, including the conditional functional central limit theorem and limit theorems started at a point for multi-indexed evolutions. The processes to be studied are very general. They include random fields with long memory and therefore they are useful to model data arising from many applied fields, such as data from economics, social sciences or engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会科学和自然科学中的许多统计分析没有适当考虑分布的变化。这种可变性可以从股票市场的分布变化、收入分配变化、选举地图变化、河流或波浪的水位变化中看出。由这些现象产生的所有数据都被认为是非平稳的。非平稳数据通常不容易建模和研究。现有的许多模型得到的结果可能是虚假的。它们可以表示两个变量之间的关系,其中一个不存在。为了应用一致、可靠的结果,必须为非平稳数据构造严格的数学工具。这项研究具有双重范围。首先,它将有助于更好地理解和建模的非平稳现象,此外,将建立新的,可靠的工具,他们的预测和长期behavior.An建立非平稳序列和随机场的极限定理的一个重要技术是近似它们与理解结构,如鞅和正交鞅。受非平稳演化渐近性质研究的启发,非平稳鞅逼近理论将得到发展。这一理论是获得新的非平稳随机过程和随机场,确保最大的不等式和渐近结果,包括条件功能中心极限定理和极限定理开始于一个点的多指标演化的投影准则的基础。要研究的过程是非常普遍的。它们包括具有长记忆的随机场,因此它们对许多应用领域产生的数据建模非常有用,例如经济学、社会科学或工程学数据。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the CLT for additive functionals of Markov chains
马尔可夫链加性泛函的 CLT
Functional CLT for martingale-like nonstationary dependent structures
用于类鞅非平稳相关结构的函数式 CLT
  • DOI:
    10.3150/18-bej1088
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Merlevède, Florence;Peligrad, Magda;Utev, Sergey
  • 通讯作者:
    Utev, Sergey
On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria
射影准则下平稳随机场的淬火中心极限定理
  • DOI:
    10.1007/s10959-019-00943-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhang, Na;Reding, Lucas;Peligrad, Magda
  • 通讯作者:
    Peligrad, Magda
New robust confidence intervals for the mean under dependence
依赖平均值的新稳健置信区间
On the local limit theorems for psi-mixing Markov chains
关于 psi 混合马尔可夫链的局部极限定理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magda Peligrad其他文献

ON THE BLOCKWISE BOOTSTRAP FOR EMPIRICAL PROCESSES FOR STATIONARY SEQUENCES
  • DOI:
    10.1214/aop/1022855654
  • 发表时间:
    1998-04
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
Functional central limit theorem via nonstationary projective conditions
通过非平稳射影条件的函数中心极限定理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florence Merlevede;Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the local limit theorems for linear sequences of lower psi-mixing Markov chains
低psi混合马尔可夫链线性序列的局部极限定理
A criterion for tightness for a class of dependent random variables
  • DOI:
    10.1007/bf01896693
  • 发表时间:
    1982-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Magda Peligrad
  • 通讯作者:
    Magda Peligrad
On the Weak Invariance Principle for Stationary Sequences under Projective Criteria
  • DOI:
    10.1007/s10959-006-0029-y
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Florence Merlevède;Magda Peligrad
  • 通讯作者:
    Magda Peligrad

Magda Peligrad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magda Peligrad', 18)}}的其他基金

Asymptotic Results for Stochastic Processes via New Projective Methods
通过新投影方法得出随机过程的渐近结果
  • 批准号:
    2054598
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Spectral analysis of stochastic processes and random fields
随机过程和随机场的谱分析
  • 批准号:
    1512936
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Asymptotic theory for stochastic processes via martingale methods
通过鞅方法的随机过程渐近理论
  • 批准号:
    1208237
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Dependent Sequences of Random Variables and Applications
数学科学:随机变量相关序列的渐近行为及其应用
  • 批准号:
    9304010
  • 财政年份:
    1993
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behaviour of Sequences of Random Variables and Applications
数学科学:随机变量序列的渐近行为及其应用
  • 批准号:
    9007986
  • 财政年份:
    1991
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Asymptotic Behavior of Strong Mixing Sequences of Random Variables and Applications
随机变量强混合序列的渐近行为及其应用
  • 批准号:
    8905614
  • 财政年份:
    1989
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequenes of Random Variables and Applications
数学科学:随机变量混合序列的渐近行为及其应用
  • 批准号:
    8702759
  • 财政年份:
    1987
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behavior of Mixing Sequences of Random Variables
数学科学:随机变量混合序列的渐近行为
  • 批准号:
    8503016
  • 财政年份:
    1985
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
  • 批准号:
    2054735
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Finer limit theorems for stochastic models on lattices with spatio-temporal interactions
具有时空相互作用的格子随机模型的精细极限定理
  • 批准号:
    19K03514
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Limit theorems for stochastic models on lattices with spatio-temporal interactions
具有时空相互作用的格子随机模型的极限定理
  • 批准号:
    16K21039
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Stochastic Partial Differential Equations, Fractional Noises and Limit Theorems
随机偏微分方程、分数噪声和极限定理
  • 批准号:
    1512891
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Theoretical statistics for stochastic processes and limit theorems
随机过程的理论统计和极限定理
  • 批准号:
    24340015
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems
随机控制、不完全市场和随机极限定理中的问题
  • 批准号:
    0604491
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
A study on limit theorems related to stochastic models in pupulation genetics
幼虫遗传学随机模型相关极限定理的研究
  • 批准号:
    10640132
  • 财政年份:
    1998
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Limit theorems for scaled stochastic processes associated with systems properties of almost lack of memory distributions
与几乎缺乏内存分布的系统属性相关的缩放随机过程的极限定理
  • 批准号:
    9095-1994
  • 财政年份:
    1997
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Limit theorems for scaled stochastic processes associated with systems properties of almost lack of memory distributions
与几乎缺乏内存分布的系统属性相关的缩放随机过程的极限定理
  • 批准号:
    9095-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了