Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04

非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04

基本信息

  • 批准号:
    0352061
  • 负责人:
  • 金额:
    $ 4.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-01 至 2005-04-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0352061Principal Investigator: Nicholas M. ErcolaniThis proposal is for support of junior US based mathematicians toparticipate in scientific activities at the Fields Instituteduring the thematic program semester in Nonlinear Waves, KineticTheory and Hamiltonian Partial Differential Equations (PDE) thatwill take place during the Spring semester of 2004. The focus ofthe semester will concern areas of research on PDE that aremotivated by nonlinear wave theory, kinetic theory, andHamiltonian systems. Hamiltonian PDE form a class of linear andnonlinear partial differential equations which share the propertythat they can be written in the form of a Hamiltonian system withinfinitely many degrees of freedom, using various and sometimesnonclassical symplectic structures. Principal examples includenonlinear wave equations, nonlinear Schroedinger equations andEuler's equations for water waves. The analogy with dynamicalsystems raises a number of basic questions, which form a part ofthe motivation for this semester of focus on Hamiltonian PDE. Ofparticular note is the connection that has been establishedbetween the theory of kinetic equations coming from statisticalmechanics, and the nonlinear systems of PDE which arise in theirmacroscopic limits. The paradigm is the fluid dynamical scalinglimit of the Boltzmann equation, but there are numerous emergingareas of relevance for this analysis, including the beginnings ofa mathematically rigorous foundation for the theory of nonlinearwave turbulence.The organizers are expecting this thematic program to be a verydynamic focus of research on Partial Differential Equations thatmodel a variety of physical phenomena, such as planetary motions,lasers and optical fiber systems, ocean waves and fluidturbulence. The character of the program is broadlyinternational, and it represents an opportunity for exposure foryoung mathematicians. The short course series, the four workshopsand the symposia are especially appropriate for participation bydeveloping research mathematicians or physicists early in theircareer. The organizing committee believes that the program willengender further interaction and lasting collaboration amongparticipants from various disciplines. Additionally, theparticipation of women and under-represented minorities will beactively encouraged.
摘要奖:DMS-0352061首席研究员:Nicholas M.Ercolani这项建议是为了支持美国初级数学家在2004年春季学期的主题项目学期中参与菲尔德研究所的科学活动,主题项目是非线性波动、运动论和哈密尔顿偏微分方程(PDE)。本学期的重点将涉及由非线性波动理论、动力学理论和哈密顿系统推动的偏微分方程组的研究领域。哈密顿偏微分方程组形成了一类线性和非线性偏微分方程组,它们的共同性质是它们可以写成无限多个自由度的哈密顿系统的形式,使用各种有时非经典的辛结构。主要例子包括非线性波动方程、非线性薛定谔方程和水波的欧拉方程。与动力学系统的类比提出了一些基本问题,这些问题构成了本学期重点学习哈密顿偏微分方程的动机的一部分。特别值得注意的是,来自统计力学的动力学方程理论与出现在其宏观极限内的偏微分方程组的非线性系统之间已经建立了联系。这个范例是玻尔兹曼方程的流体动力学标度极限,但这种分析有许多新的相关领域,包括开始为非线性波浪湍流理论奠定严格的数学基础。组织者希望这个主题项目成为偏微分方程组研究的一个非常动态的焦点,它模拟了各种物理现象,如行星运动、激光和光纤系统、海浪和流体湍流。该项目的特点是广泛的国际化,它为年轻的数学家提供了一个展示自己的机会。短期课程系列、四个工作坊和专题讨论会特别适合于在研究数学家或物理学家的职业生涯早期发展他们的参与。组委会相信,该项目将在不同学科的参与者之间产生进一步的互动和持久的合作。此外,还将积极鼓励妇女和任职人数不足的少数群体参加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Ercolani其他文献

Geometry of singularities for the steady Boussinesq equations
  • DOI:
    10.1007/bf01587949
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Russel E. Caflisch;Nicholas Ercolani;Gregory Steele
  • 通讯作者:
    Gregory Steele

Nicholas Ercolani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Ercolani', 18)}}的其他基金

Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
  • 批准号:
    1615921
  • 财政年份:
    2016
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
  • 批准号:
    1212167
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
  • 批准号:
    0808059
  • 财政年份:
    2008
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
  • 批准号:
    0729519
  • 财政年份:
    2007
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Asymptotic Analysis of Variational and Hamiltonian PDEs
变分偏微分方程和哈密顿偏微分方程的渐近分析
  • 批准号:
    0412310
  • 财政年份:
    2004
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
  • 批准号:
    0113649
  • 财政年份:
    2001
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Topics in Pattern Formation Far From Threshold
远离阈值的模式形成主题
  • 批准号:
    0073087
  • 财政年份:
    2000
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
  • 批准号:
    9971765
  • 财政年份:
    1999
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
  • 批准号:
    9626306
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
  • 批准号:
    9523804
  • 财政年份:
    1995
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
  • 批准号:
    2339212
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
  • 批准号:
    23K03363
  • 财政年份:
    2023
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
  • 批准号:
    2889685
  • 财政年份:
    2023
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Studentship
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
  • 批准号:
    2238072
  • 财政年份:
    2023
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
  • 批准号:
    23K03174
  • 财政年份:
    2023
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
  • 批准号:
    22K20337
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
  • 批准号:
    22K18838
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nonlinear Waves in Lattices and Metamaterials
晶格和超材料中的非线性波
  • 批准号:
    2204880
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Energetic Electron Nonlinear Interactions with Oblique Whistler-Mode Chorus Waves
合作研究:GEM--高能电子与斜惠斯勒模式合唱波的非线性相互作用
  • 批准号:
    2225121
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Mechanical Characterization of Nonlinear Soft Materials Using Surface Waves
使用表面波对非线性软材料进行机械表征
  • 批准号:
    2200353
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了