Asymptotic Analysis of Variational and Hamiltonian PDEs

变分偏微分方程和哈密顿偏微分方程的渐近分析

基本信息

  • 批准号:
    0412310
  • 负责人:
  • 金额:
    $ 17.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

The study of pattern forming systems is a fundamental area of scientific investigation in which the tools of modern mathematical analysis (dynamical systems theory, the theory of partial differential equations, asymptotic analysis and probability theory) can be brought to bear on the modelling of physical systems especially near a critical transition in the behavior of the system. For the projects being studied in this proposal the PI is principally interested in patterns that arise when a continuous translational symmetry is reduced, at a critical threshold, to a discrete periodic symmetry resulting in what is often referred to as a "striped" pattern. Such patterns are for instance generic in Rayleigh-Benard convection (RBC) which is a key mechanism in the formation of many weather patterns. In RBC the striped pattern corresponds to the formation, at a criticaltemperature, of periodic "convection rolls" of a uniform characteristic width. A major goal of this research is to study not just the patterns that form at a critical threshold but to characterize the types of defects that arise in these patterns when one is far from threshold. The patterns studied here are stationary and, consistent with that, one may investigate the formation of defects through the minimization of a free energy which depends on a control parameter with a critical value that corresponds to the critical threshold of the physical system. The free energy studied here is known as the "regularized Cross-Newell energy" and is expressedin terms of a phase that locally defines the striped pattern away from defects. From the mathematical point of view the problem is to study the limiting behavior of minimizers to a variational problem as a critical parameter is approached. The determination of such limits is a delicate matter but the PI is developing geometric and analytical tools that should make this determination tractable.A second part of this proposal also involves the asymptotic study of variational problems. The general context of these problems is the study of the statistics of eigenvalues of N x N Hermitean matrices as N becomes large. These statistics are taken with respect to a class of probabilistic expectations which are invariant under the symmetries that preserve the eigenvalues. This general areaof study is generally referred to as random matrix theorywhich has become prominent because of the insights it provides into a wide range of fields including graph theory, number theory and quantum field theory. Indeed the PIand his collaborators recently extablished the existence of a large N expansion for the random matrix partition function which has played a central role over the last twenty years in discussions within the physics community concerning quantum gravity. The key to this analysis is the study of a variational problem that characterizes the asymptotic expected density of eigenvalues and the asymptotics of an associated Riemann-Hilbert problem. The current proposal will study the fine sturcture of this expansionwhich can provide detailed information about counting functions which enumerate graphs on topologically non-trivial surfaces. These counting functions will be determined as solutions to partial differential equations which are continuum limits of Hamiltonian (in fact completely integrable) sytems of ordinary differential equations which describe how the eigenvalue density changes as the probabilistic matrix expectations are varied. The PI will also explorethe behavior of the random matrix partition function as a critical threshold in the variation of these expectations is approached. Physicists have conjectured that this phase transition can be used to determine a viable candidate for calculating field theoretic expectations in two-dimensional quantum gravity. Both parts of this proposal have potential relevance for interestingapplications. The work on pattern formation will make definite predictions on defect formation that can be tested in the laboratory. Indeed some of the predictions emerging from this work are currently being tested by experimentalists. The PI envisions applications to the stability analysis of patterns and some initial studies of the dynamics of wave patterns. In the future one may expect this work to have relevance for modelling defect structure in animal coat patterns (including fingerprints) and the evolution of plantpatterns.The methods and ideas of random matrix theory are having a broad impact; in number theory, combinatorics, random graph theory (or networks), growth processes and multivariate statistics, to name just a few areas of application. It is important that the underlying methods and results of random matrix theory be established with the highest standards ofrigor so that they can be widelyused in these diverse applications. That is an overarching and fundamental goal of this part of the research proposal.
模式形成系统的研究是科学研究的一个基本领域,其中现代数学分析的工具(动力系统理论,偏微分方程理论,渐近分析和概率论)可以用于对物理系统的建模,特别是在系统行为的临界转变附近。对于本提案中正在研究的项目,PI主要感兴趣的是当连续平移对称性在临界阈值处减少到离散周期对称性时产生的图案,从而导致通常被称为“条纹”图案。这种模式例如在瑞利-贝纳德对流(RBC)中是通用的,这是形成许多天气模式的关键机制。在RBC中,条纹图案对应于在临界温度下形成的具有均匀特征宽度的周期性“对流卷”。这项研究的一个主要目标是不仅要研究在临界阈值形成的模式,而且要描述当一个人远离阈值时,这些模式中出现的缺陷类型。这里研究的图案是固定的,并且与此一致,可以通过最小化自由能来研究缺陷的形成,所述自由能取决于具有对应于物理系统的临界阈值的临界值的控制参数。这里研究的自由能被称为“正则化的交叉纽厄尔能量”,并表示在一个相位,局部定义的条纹图案远离缺陷。从数学的角度来看,问题是研究极小值的极限行为的变分问题作为一个临界参数的做法。这种限制的确定是一个微妙的问题,但PI正在开发的几何和分析工具,应该使这一决定易于处理。本建议的第二部分还涉及变分问题的渐近研究。这些问题的一般背景是研究N × N厄米特矩阵的特征值的统计N变得很大。这些统计是相对于一类概率的期望是不变的对称下,保持特征值。这个一般的研究领域通常被称为随机矩阵理论,它已经变得突出,因为它提供了广泛的领域,包括图论,数论和量子场论。事实上,PI和他的合作者最近确立了随机矩阵配分函数的大N展开的存在,该随机矩阵配分函数在过去20年的物理学界关于量子引力的讨论中发挥了核心作用。这种分析的关键是研究变分问题,其特征在于特征值的渐近期望密度和相关的黎曼-希尔伯特问题的渐近性。目前的建议将研究这种扩展的精细结构,它可以提供有关计数函数的详细信息,这些函数可以枚举拓扑非平凡曲面上的图。这些计数函数将被确定为偏微分方程的解,偏微分方程是常微分方程的汉密尔顿(实际上是完全可积的)系统的连续极限,描述了本征值密度如何随着概率矩阵期望的变化而变化。PI还将探索随机矩阵配分函数的行为,作为这些期望值变化的临界阈值。物理学家们已经证实,这种相变可以用来确定一个可行的候选者,用于计算二维量子引力中的场论期望。 这两个部分的建议有潜在的相关性有趣的应用程序。图案形成的工作将对缺陷形成做出明确的预测,这些预测可以在实验室中进行测试。事实上,从这项工作中产生的一些预测目前正在由实验学家进行测试。PI设想应用于模式的稳定性分析和波模式的动力学的一些初步研究。在未来,人们可能会期望这项工作具有相关性的动物皮毛模式(包括指纹)和plantpatterns.The方法和随机矩阵理论的思想有着广泛的影响,在数论,组合学,随机图论(或网络),增长过程和多元统计模型的缺陷结构,仅举几个应用领域。重要的是,随机矩阵理论的基本方法和结果必须以最高的严格标准建立,以便它们可以广泛地用于这些不同的应用。这是研究提案这一部分的首要和基本目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Ercolani其他文献

Geometry of singularities for the steady Boussinesq equations
  • DOI:
    10.1007/bf01587949
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Russel E. Caflisch;Nicholas Ercolani;Gregory Steele
  • 通讯作者:
    Gregory Steele

Nicholas Ercolani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Ercolani', 18)}}的其他基金

Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
  • 批准号:
    1615921
  • 财政年份:
    2016
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
  • 批准号:
    1212167
  • 财政年份:
    2012
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
  • 批准号:
    0808059
  • 财政年份:
    2008
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
  • 批准号:
    0729519
  • 财政年份:
    2007
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04
非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04
  • 批准号:
    0352061
  • 财政年份:
    2004
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
  • 批准号:
    0113649
  • 财政年份:
    2001
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Topics in Pattern Formation Far From Threshold
远离阈值的模式形成主题
  • 批准号:
    0073087
  • 财政年份:
    2000
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
  • 批准号:
    9971765
  • 财政年份:
    1999
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
  • 批准号:
    9626306
  • 财政年份:
    1996
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
  • 批准号:
    9523804
  • 财政年份:
    1995
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
  • 批准号:
    2350161
  • 财政年份:
    2023
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Hippocampal shape analysis using graph convolutional variational autoencoders
使用图卷积变分自动编码器进行海马形状分析
  • 批准号:
    572580-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
  • 批准号:
    RGPIN-2017-04035
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Variational Analysis of Elastic Patterns and Mechanical Metamaterials
职业:弹性模式和机械超材料的变分分析
  • 批准号:
    2145225
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Variational Analysis: Theory, Algorithms, and Applications
变分分析:理论、算法和应用
  • 批准号:
    2204519
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Variational structures, convergence to equilibrium and multiscale analysis for non-Markovian systems
非马尔可夫系统的变分结构、均衡收敛和多尺度分析
  • 批准号:
    EP/V038516/1
  • 财政年份:
    2022
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Research Grant
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
  • 批准号:
    21H04431
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Applications of variational analysis in optimization and data science
变分分析在优化和数据科学中的应用
  • 批准号:
    RGPIN-2017-04035
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry, Analysis, and Variational Methods
几何、分析和变分方法
  • 批准号:
    2105557
  • 财政年份:
    2021
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了