Topics in Pattern Formation Far From Threshold

远离阈值的模式形成主题

基本信息

  • 批准号:
    0073087
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-15 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

NSF Award Abstract - DMS-0073087Mathematical Sciences: Topics in Pattern Formation Far From ThresholdAbstract0073087 ErcolaniThis research examines various aspects of partial differential equations that model pattern formation in physical systems when they are stressed well above threshold. Particular emphasis is placed on understanding the structure of defects in these systems, especially in the singular limit as some regularization is removed. For this project the particular model under consideration is the regularized Cross-Newell phase diffusion equation. This equation has a free energy similar to two-dimensional Ginzburg-Landau free energy except that variation is restricted to the domain of gradient vector fields. Associated defect structures are typically one-dimensional rather than being point defects. This project explores four research problems related to this interesting model. The first concerns generalizing the model to incorporate variations over director fields (unoriented analogues of vector fields). This extension may have important consequences for understanding the emergence of labyrinthine patterns far from threshold. The second project involves refining the technique of self-dual reduction (a novel method to determine natural candidates for asymptotic minimizers of the free energy) to incorporate general boundary conditions as well as general geometries. The third project will extend the model to three or more dimensions. Potential applications would be to modeling filamentary collapse, seen in some recent experimental studies of bacterial colonies. The final project will be to undertake a study of the validity of the phase equation within a model pattern-forming microscopic system. Patterns with almost periodic structure are ubiquitous. One sees them in nature as sand ripples, as tiger stripes, as fingerprints and in atmospheric and geological formations. In the laboratory, they are seen in experiments on optical beams, on convection, on flame fronts, as labyrinths on magnetic films, as textured Faraday waves. The striking similarity between pattern textures arising in very different microscopic contexts, not only in planform (striped, hexagonal) but also in defect structures, suggests that patterns are macroscopic objects with universal features depending only on common symmetries shared by different microscopic situations. Finding macroscopic descriptions which unify and simplify our understanding of pattern behavior wherever it occurs is the principal objective motivating this research.
数学科学:远离阈值的模式形成主题[摘要]ercolani本研究考察了当物理系统的应力远高于阈值时,模拟模式形成的偏微分方程的各个方面。特别强调的是理解这些系统中缺陷的结构,特别是在奇异极限中,因为一些正则化被删除了。对于这个项目,所考虑的特定模型是正则化的Cross-Newell相扩散方程。该方程的自由能与二维金兹堡-朗道自由能相似,只是变化仅限于梯度向量场的域。相关的缺陷结构通常是一维的,而不是点缺陷。这个项目探讨了与这个有趣的模型相关的四个研究问题。第一个问题是将模型一般化,以包含方向场(矢量场的无方向类似物)的变化。这种扩展可能对理解远离阈值的迷宫模式的出现产生重要影响。第二个项目涉及改进自对偶约简技术(一种确定自由能渐近极小值的自然候选者的新方法),以结合一般边界条件和一般几何形状。第三个项目将把模型扩展到三个或更多的维度。潜在的应用将是模拟纤维的崩溃,在最近的一些细菌菌落的实验研究中看到。最后的项目将是研究相方程在模型模式形成微观系统中的有效性。几乎具有周期性结构的模式是普遍存在的。人们在自然界中看到它们,就像沙子的涟漪,老虎的条纹,指纹,在大气和地质构造中。在实验室里,它们在光束实验、对流实验、火焰前沿实验、磁膜实验、法拉第波实验中都能看到。在非常不同的微观环境中产生的图案纹理之间惊人的相似性,不仅在平面(条纹,六边形)中,而且在缺陷结构中,表明图案是具有普遍特征的宏观物体,仅依赖于不同微观情况共享的共同对称性。寻找宏观的描述,统一和简化我们对模式行为的理解,无论它发生在哪里,这是推动本研究的主要目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Ercolani其他文献

Geometry of singularities for the steady Boussinesq equations
  • DOI:
    10.1007/bf01587949
  • 发表时间:
    1996-09-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Russel E. Caflisch;Nicholas Ercolani;Gregory Steele
  • 通讯作者:
    Gregory Steele

Nicholas Ercolani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Ercolani', 18)}}的其他基金

Random Structures and Integrable Systems: Analysis and Applications
随机结构与可积系统:分析与应用
  • 批准号:
    1615921
  • 财政年份:
    2016
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Models and Asymptotics of Non-equilibrium Steady States in Driven Diffusive Systems
驱动扩散系统中非平衡稳态的模型和渐近
  • 批准号:
    1212167
  • 财政年份:
    2012
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Variational Theories for Defects and Patterns
缺陷和模式的变分理论
  • 批准号:
    0808059
  • 财政年份:
    2008
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
生物系统群体数学建模与分析会议
  • 批准号:
    0729519
  • 财政年份:
    2007
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Program in Nonlinear Waves, Kinetic Theory and Hamiltonian Partial Differential Equations-Fields Institute, Spg 04
非线性波、运动理论和哈密顿偏微分方程项目-场研究所,Spg 04
  • 批准号:
    0352061
  • 财政年份:
    2004
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Asymptotic Analysis of Variational and Hamiltonian PDEs
变分偏微分方程和哈密顿偏微分方程的渐近分析
  • 批准号:
    0412310
  • 财政年份:
    2004
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
ITR/AP: Optimal Nonlinear Estimation in the Geosciences
ITR/AP:地球科学中的最优非线性估计
  • 批准号:
    0113649
  • 财政年份:
    2001
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Workshop on Integrating Integrability into Mathematics and Science, October 29 - 31, 1999, Tuscon, Arizona
将可积性融入数学和科学研讨会,1999 年 10 月 29 日至 31 日,亚利桑那州图斯康
  • 批准号:
    9971765
  • 财政年份:
    1999
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Models and Methods in Nonlinear Optics
数学科学:非线性光学中的几何模型和方法
  • 批准号:
    9626306
  • 财政年份:
    1996
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
  • 批准号:
    9523804
  • 财政年份:
    1995
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Nano/Micro-surface pattern的摩擦特性研究
  • 批准号:
    50765008
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目
图案(Pattern)动力学方法的初探
  • 批准号:
    19472043
  • 批准年份:
    1994
  • 资助金额:
    6.5 万元
  • 项目类别:
    面上项目
激光等离子体中的Pattern动力学及时空混沌
  • 批准号:
    19375038
  • 批准年份:
    1993
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
  • 批准号:
    23K11711
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pattern formation in drying bio-fluid droplets: From Fundamentals to Data-driven Disease Screening
干燥生物液滴的模式形成:从基础知识到数据驱动的疾病筛查
  • 批准号:
    23KF0104
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establishment of a new epidermal culture focusing on keratinocyte pattern formation
建立专注于角质形成细胞模式形成的新型表皮培养物
  • 批准号:
    23K15277
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
  • 批准号:
    2238127
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Biological Pattern Formation
生物模式的形成
  • 批准号:
    2787663
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Studentship
Geometric and numerical studies of the behavior and pattern formation of powders and charged particles under periodic external forces
粉末和带电粒子在周期性外力作用下的行为和图案形成的几何和数值研究
  • 批准号:
    23K03260
  • 财政年份:
    2023
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial Control of Pattern Formation in Early Vertebrate Development
早期脊椎动物发育中模式形成的空间控制
  • 批准号:
    10673415
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
Bulk-Interface Coupled Response in Novel Materials: Pattern Formation and Interactive Migration
新型材料中的体界面耦合响应:图案形成和交互式迁移
  • 批准号:
    2204288
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了