Collaborative Research: Efficient Unstructured Discontinuous Galerkin Methods for Global Nonhydrostatic Atmospheric Modeling

合作研究:全球非静水力大气模拟的高效非结构化不连续伽辽金方法

基本信息

  • 批准号:
    1216576
  • 负责人:
  • 金额:
    $ 35.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

This is a proposal to develop efficient unstructured discontinuous Galerkin (DG) methods for global non-hydrostatic atmospheric modeling. As the horizontal resolution of numerical weather prediction models increases, it becomes advantageous to model non-hydrostatic motions. The dynamics of deep convective clouds are non-hydrostatic and these clouds produce important feedbacks on the larger-scale flow that are difficult to parameterize. To represent such clouds and similar small-scale processes, the equations solved by global atmospheric models must transition from hydrostatic to non-hydrostatic formulations. A host of challenging, non-trivial numerical problems arise when one enters the non-hydrostatic regime, including: I) developing efficient time-integrators and/or "soundproof" equation sets to confront the fast acoustic waves supported by the governing equations; II) effectively resolving multi-scale flow features, that may require adaptive mesh refinement (AMR); and III) constructing spatial discretization methods that conserve all important quantities and can be exploited to satisfy the above two conditions. Item (I) will be addressed by designing a suite of implicit-explicit (IMEX) time-integrators for our governing equations and discrete spatial operators to allow larger explicit time-steps with better conditioned implicit parts. In addition, the fully compressible (Euler) equations will be compared to sound-proof systems (anelastic, pseudo-incompressible) in meteorologically relevant test cases. Item (II) will be addressed by testing two forms of AMR: conforming and nonconforming methods. Conforming methods are traditionally used with continuous discretization methods and require no modifications to the partial differential equation (PDE) solver since the AMR is essentially a separate method. Nonconforming methods are traditionally used with discontinuous methods but can also be used with continuous methods. Nonconforming methods couple the PDE solver with the AMR approach in a seamless fashion thereby requiring modification of the PDE solver. Item (III) will be addressed by virtue of the DG method that is capable of delivering both local and global conservation of all prognostic variables and is also well suited for handling strong gradients (e.g., discontinuities) that may be introduced by the moist variables. Long-range weather forecasting and studies of the Earth's climate use computers to simulate the weather over the entire globe. Individual thunderstorms and clusters of similar deep clouds produce rain and transport moisture, heat, and momentum vertically throughout the atmosphere. Limitations in computer power have prevented global simulations from using the fundamental equations describing fluid motion to calculate the behavior of these localized clouds. Instead, the net effects of such clouds on the global atmosphere are "parameterized" using necessarily crude approximations. The latest advancements in computer architecture have finally made it possible to simulate large clouds in global models, but there are major challenges that must be overcome. The mathematical equations on which global models are based must become better approximations to the fundamental equations of fluid motion, and an efficient flexible structure must be determined to hold the data describing the state of the global atmosphere. This research addresses both of these challenges.
这是一个建议,发展有效的非结构化间断伽辽金(DG)方法的全球非静力大气模式。随着数值天气预报模式水平分辨率的提高,模拟非静力运动变得有利。深对流云的动力学是非流体静力学的,这些云对大尺度流动产生重要的反馈,难以参数化。为了表示这样的云和类似的小尺度过程,全球大气模式求解的方程必须从流体静力学公式过渡到非流体静力学公式。当人们进入非流体静力学领域时,出现了许多具有挑战性的、非平凡的数值问题,包括:I)开发有效的时间积分器和/或“隔音”方程组以面对由控制方程支持的快速声波; II)有效地解决多尺度流动特征,这可能需要自适应网格细化(AMR);以及III)构造空间离散化方法,该空间离散化方法保持所有重要量并且可以被利用来满足上述两个条件。第(I)项将通过为我们的控制方程和离散空间算子设计一套隐式-显式(IMEX)时间积分器来解决,以允许更大的显式时间步长和更好的条件隐式部分。此外,完全可压缩(欧拉)方程将比较隔音系统(滞弹性,伪不可压缩)在气象相关的测试用例。第(II)项将通过测试两种形式的AMR来解决:一致性方法和验证方法。一致性方法传统上与连续离散化方法一起使用,并且不需要修改偏微分方程(PDE)求解器,因为AMR本质上是一种单独的方法。非协调方法传统上用于不连续方法,但也可用于连续方法。非协调方法将PDE求解器与AMR方法无缝耦合,从而需要修改PDE求解器。第(III)项将通过DG方法来解决,该方法能够提供所有预后变量的局部和全局守恒,并且也非常适合于处理强梯度(例如,不连续性),这可能是由潮湿的变量。长期天气预报和地球气候研究使用计算机模拟整个地球仪的天气。单独的雷暴和类似的深云簇产生降雨,并在整个大气中垂直输送水分、热量和动量。计算机能力的限制使得全球模拟无法使用描述流体运动的基本方程来计算这些局部云的行为。相反,这些云对全球大气的净影响是使用必要的粗略近似值“参数化”的。计算机体系结构的最新进展终于使在全球模型中模拟大型云成为可能,但仍存在必须克服的重大挑战。全球模型所依据的数学方程必须更好地近似流体运动的基本方程,必须确定一种有效的灵活结构来保存描述全球大气状况的数据。这项研究解决了这两个挑战。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preserving Nonnegativity in Discontinuous Galerkin Approximations to Scalar Transport via Truncation and Mass Aware Rescaling (TMAR)
  • DOI:
    10.1175/mwr-d-16-0220.1
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Devin K. Light;D. Durran
  • 通讯作者:
    Devin K. Light;D. Durran
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dale Durran其他文献

Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model
机器学习地球系统模型中的耦合海洋-大气动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenggong Wang;Michael S. Pritchard;Noah D. Brenowitz;Y. Cohen;B. Bonev;Thorsten Kurth;Dale Durran;Jaideep Pathak
  • 通讯作者:
    Jaideep Pathak

Dale Durran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dale Durran', 18)}}的其他基金

Mountain-Wave Evolution and Orographic Precipitation II
山波演化与地形降水II
  • 批准号:
    1929466
  • 财政年份:
    2019
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Mountain-Wave Evolution and Orographic Precipitation
山波演化与地形降水
  • 批准号:
    1545927
  • 财政年份:
    2016
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Mesoscale Airflow over Mountains: Wave Drag and Orographic Precipitation
山脉上空的中尺度气流:波浪阻力和地形降水
  • 批准号:
    1138977
  • 财政年份:
    2011
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Mesoscale Airflow Over Mountains: Orographic Drag and Upstream Convective Initiation
山脉上空的中尺度气流:地形阻力和上游对流引发
  • 批准号:
    0836316
  • 财政年份:
    2008
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
The Co-Evolution of Mesoscale Airflow over Mountains and the Larger Scale Flow
山地中尺度气流与大尺度气流的协同演化
  • 批准号:
    0506589
  • 财政年份:
    2005
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Observational, Modeling, and Climatological Study of Sierra Rotors
合作研究:Sierra Rotors 的观​​测、建模和气候学研究
  • 批准号:
    0242980
  • 财政年份:
    2003
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Mesoscale Airflow over Mountains: Modeling and Observational Analysis
山脉上空的中尺度气流:建模和观测分析
  • 批准号:
    0137335
  • 财政年份:
    2002
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Troposphere-Stratosphere Coupling Processes
对流层平流层耦合过程
  • 批准号:
    0225441
  • 财政年份:
    2002
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Mesoscale Air Flow over Topography: Modeling and Observation
地形上的中尺度气流:建模和观察
  • 批准号:
    9817728
  • 财政年份:
    1999
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant
Numerical Modeling of Mesoscale Airflow Over Mountains
山区中尺度气流的数值模拟
  • 批准号:
    9530662
  • 财政年份:
    1996
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 35.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了