Developing reduced basis methods for Galerkin and Collocation framework

为 Galerkin 和 Collocation 框架开发简化基方法

基本信息

  • 批准号:
    1216928
  • 负责人:
  • 金额:
    $ 16.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Reduced basis method (RBM) is a model reduction framework for rapid and reliable simulations of input-parametrized partial differential equations. Many applications require simulations to be repeated tens of thousands of times to study the effect of the parameters on the solution. This repetition can be prohibitive in terms of computational cost. The RBM can provide a surrogate solution in negligible computational time. A similar approach, known as the reduced basis element method (RBEM) can be employed for computing the surrogate solution on a complicated domain. This method is a combination of domain decomposition and RBM. In this grant proposal, the PI proposes to continue his work in these two areas to design a completely new RBM for the collocation framework and to develop (Galerkin) variants of RBM and RBEM suitable for applications to simulations of scattering problems with large number, wide range of parameters, and rough geometries. The proposed research includes two phases. The first phase aims to build a solid theoretical foundation that includes study of the new collocation-based RBM, a novel error estimation procedure for RBEM, a RBM algorithm design based on efficient error estimation for a wider range of weak formulations. The second phase of this project is the application of the newly-developed methodologies to acoustic/electromagnetic scattering with rather high-dimensional parameter and uncertainties in the geometry of the scatterer. The intellectual merit of the proposed research lies in their comprehensive coverage of novel algorithm design, solid analysis, and efficient implementation. The PI's work has far-reaching goals beyond the current proposal because of the methods' broad applicability to problems of significant impact in science and engineering. The real-world application areas include (but are not limited to) national security (fine-tuning of the shape and material for stealth technology), renewable energy (design of solar cells), and non-destructive sensing. The broader impact of this proposal will result from its scientific impact and educational component. The results will be widely disseminated and the codes made publicly available. The proposed research will incorporate rigorous undergraduate and graduate student training and mentoring. Special attention will be paid to under-represented groups including minorities.
减基方法(RBM)是一种模型降阶框架,用于快速、可靠地模拟输入参数的偏微分方程组。许多应用需要重复模拟数万次,以研究参数对解的影响。就计算成本而言,这种重复可能令人望而却步。RBM可以在可以忽略的计算时间内提供代理解。一种类似的方法,称为减缩基元方法(RBEM),可用于计算复杂区域上的代理解。该方法是区域分解和RBM方法的结合。在这份赠款提案中,PI建议继续他在这两个领域的工作,为配置框架设计一个全新的RBM,并开发(Galerkin)RBM和RBEM的变体,适用于模拟具有大量、广泛参数和粗糙几何的散射问题。拟议的研究包括两个阶段。第一阶段旨在建立坚实的理论基础,包括研究新的基于配置的RBM,一种新的RBEM误差估计方法,一种基于对更大范围弱公式的有效误差估计的RBM算法设计。该项目的第二阶段是将新开发的方法应用于具有相当高维参数和散射体几何不确定性的声学/电磁散射。所提出的研究的智力价值在于其对新颖算法设计的全面覆盖、扎实的分析和高效的实现。国际和平研究所的工作具有比目前的提议更深远的目标,因为这些方法对科学和工程中具有重大影响的问题具有广泛的适用性。现实世界的应用领域包括(但不限于)国家安全(隐形技术的形状和材料的微调)、可再生能源(太阳能电池的设计)和非破坏性传感。这项提议的更广泛影响将来自其科学影响和教育内容。结果将被广泛传播,并公开代码。拟议的研究将包括严格的本科生和研究生培训和指导。将特别注意代表性不足的群体,包括少数群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlai Chen其他文献

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem
基于后验误差估计的改进连续约束方法用于二维麦克斯韦问题的简化基近似
Multiple Solutions of Boundary Value Problems for nth-Order Singular Nonlinear Integrodifferential Equations in Abstract Spaces
抽象空间中n阶奇异非线性积分微分方程边值问题的多重解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Tingqiu Cao;Baoxia Qin
  • 通讯作者:
    Baoxia Qin
L1-ROC and R2-ROC: L1- and R2-based Reduced Over-Collocation methods for parametrized nonlinear partial differential equations
L1-ROC 和 R2-ROC:参数化非线性偏微分方程的基于 L1 和 R2 的减少过度搭配方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;S. Gottlieb;Lijie Ji;Y. Maday;Zhenli Xu
  • 通讯作者:
    Zhenli Xu
A reduced basis warm-start iterative solver for the parameterized linear systems
参数化线性系统的减基热启动迭代求解器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijin Hou;Yanlai Chen;Yinhua Xia
  • 通讯作者:
    Yinhua Xia
A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
降基近似框架下 inf-sup 稳定性常数下界的单调评估
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;J. Hesthaven;Y. Maday;Jerónimo Rodríguez
  • 通讯作者:
    Jerónimo Rodríguez

Yanlai Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlai Chen', 18)}}的其他基金

Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation
神经网络的减基增强及其在量子材料模拟中的应用
  • 批准号:
    2208277
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Implementation of a Contextualized Computing Pedagogy in STEM Core Courses and Its Impact on Undergraduate Student Academic Success, Retention, and Graduation
在 STEM 核心课程中实施情境化计算教学法及其对本科生学业成功、保留和毕业的影响
  • 批准号:
    2030552
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches
研讨会:不连续伽辽金方法及相关方法的最新进展和挑战
  • 批准号:
    1720825
  • 财政年份:
    2017
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Rigorous Development of an Efficient Reduced Collocation Approach for High-Dimensional Parametric Partial Differential Equations
严格开发高维参数偏微分方程的高效简化配置方法
  • 批准号:
    1719698
  • 财政年份:
    2017
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant

相似国自然基金

2C型蛋白磷酸酶REDUCED DORMANCY 5通过激酶-磷酸酶蛋白复合体调控种子休眠的分子机制
  • 批准号:
    32000250
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高维参数和半参数模型下的似然推断
  • 批准号:
    11871263
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
图的一般染色数与博弈染色数
  • 批准号:
    10771035
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanistic basis of exercise responses in liver disease
肝病运动反应的机制基础
  • 批准号:
    10749608
  • 财政年份:
    2023
  • 资助金额:
    $ 16.11万
  • 项目类别:
Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation
神经网络的减基增强及其在量子材料模拟中的应用
  • 批准号:
    2208277
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Standard Grant
Defining the genetic basis of barley metabolite content to improve nutrient use efficiency, crop quality and resilience with reduced inputs
确定大麦代谢物含量的遗传基础,以减少投入来提高养分利用效率、作物质量和恢复力
  • 批准号:
    2763643
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Studentship
Defining the genetic basis of barley metabolite content to improve nutrient use efficiency crop quality and resilience with reduced inputs
定义大麦代谢物含量的遗传基础,以减少投入来提高养分利用效率、作物质量和恢复力
  • 批准号:
    BB/X511663/1
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Training Grant
A Reduced Complexity Cross in BALB/c substrains to identify the genetic basis of oxycodone dependence phenotypes
BALB/c 亚种中复杂性降低的杂交以确定羟考酮依赖性表型的遗传基础
  • 批准号:
    10437702
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
A Reduced Complexity Cross in BALB/c substrains to identify the genetic basis of oxycodone dependence phenotypes
BALB/c 亚种中降低复杂性的杂交以确定羟考酮依赖性表型的遗传基础
  • 批准号:
    9897198
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
A Reduced Complexity Cross in BALB/c substrains to identify the genetic basis of oxycodone dependence phenotypes
BALB/c 亚种中降低复杂性的杂交以确定羟考酮依赖性表型的遗传基础
  • 批准号:
    10232058
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
Deep Learning Reduced Basis Method for High-Dimensional Parametric Partial Differential Equations in Finance
金融中高维参数偏微分方程的深度学习降基方法
  • 批准号:
    EP/T004738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Research Grant
A Reduced Complexity Cross in BALB/c substrains to identify the genetic basis of oxycodone dependence phenotypes
BALB/c 亚种中降低复杂性的杂交以确定羟考酮依赖性表型的遗传基础
  • 批准号:
    10673804
  • 财政年份:
    2020
  • 资助金额:
    $ 16.11万
  • 项目类别:
Genetic basis of nicotine withdrawal in a reduced complexity cross
降低复杂性杂交中尼古丁戒断的遗传基础
  • 批准号:
    10401810
  • 财政年份:
    2018
  • 资助金额:
    $ 16.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了