Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation

神经网络的减基增强及其在量子材料模拟中的应用

基本信息

  • 批准号:
    2208277
  • 负责人:
  • 金额:
    $ 29.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project combines two types of numerical techniques, one traditional and the other nascent, in the context of efficient multi-parametric simulations. The project aims to develop a new algorithm based on deep neural networks that will be applied to the simulation of quantum materials in the field of two-dimensional materials twistronics toward a fast and accurate configuration-to-performance map. Outcomes of this project are expected also to benefit the greater scientific community that utilizes supervised machine learning for parameterized models. Software associated with this project will be made freely available. The project involves development of graduate coursework and the training of undergraduate and graduate students through involvement in the research. The need to understand the behavior of a system efficiently and accurately under variation of many underlying parameters is ubiquitous yet challenging due to the prohibitively high computational cost. Two techniques stand out in addressing this challenge, the more traditional reduced basis method and the newer deep neural networks. This project aims to combine these two techniques to build an analysis-driven computational emulator for the parameter-to-solution map of parameterized partial differential equations and to apply the resulting algorithm to the field of 2D materials twistronics. The first theme of the project involves reducing the generalization gap (performance of the trained network on data unseen during training) of certain machine learning algorithms by tapping the potential of a rigorous mathematical approach in judiciously generating computationally cheap training data in an intrinsically multi-level and multi-resolution fashion. The focus of the second theme is the development of novel numerical discretizations and their corresponding fast algorithms for a class of nonlinear partial differential equations that has direct application in optimal mass transport. Finally, the project aims to provide a systematic and rigorous study of parameterized 2D materials simulation, including the recently discovered magical angle twisted bilayer graphene.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目结合了两种类型的数值技术,一种是传统的,另一种是新兴的,在有效的多参数模拟的背景下。该项目旨在开发一种基于深度神经网络的新算法,该算法将应用于二维材料涡旋电子学领域的量子材料模拟,以实现快速准确的配置到性能映射。该项目的成果也有望使更大的科学界受益,这些科学界利用监督机器学习进行参数化模型。与此项目相关的软件将免费提供。该项目涉及研究生课程的开发,以及通过参与研究对本科生和研究生进行培训。高效、准确地理解系统在许多底层参数变化下的行为是普遍存在的,但由于计算成本过高,这一需求具有挑战性。有两种技术在解决这一挑战方面脱颖而出,一种是更传统的降基方法,另一种是较新的深度神经网络。本项目旨在结合这两种技术,建立一个分析驱动的计算模拟器,用于参数化偏微分方程的参数到解映射,并将所得算法应用于二维材料涡旋电子学领域。该项目的第一个主题涉及减少某些机器学习算法的泛化差距(训练期间未见数据的训练网络的性能),通过利用严格的数学方法的潜力,以本质上多层次和多分辨率的方式明智地生成计算廉价的训练数据。第二个主题的重点是对一类非线性偏微分方程的新型数值离散化及其相应的快速算法的发展,这些算法直接应用于最优质量输运。最后,该项目旨在对参数化二维材料模拟进行系统和严格的研究,包括最近发现的神奇角度扭曲双层石墨烯。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlai Chen其他文献

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem
基于后验误差估计的改进连续约束方法用于二维麦克斯韦问题的简化基近似
Multiple Solutions of Boundary Value Problems for nth-Order Singular Nonlinear Integrodifferential Equations in Abstract Spaces
抽象空间中n阶奇异非线性积分微分方程边值问题的多重解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Tingqiu Cao;Baoxia Qin
  • 通讯作者:
    Baoxia Qin
L1-ROC and R2-ROC: L1- and R2-based Reduced Over-Collocation methods for parametrized nonlinear partial differential equations
L1-ROC 和 R2-ROC:参数化非线性偏微分方程的基于 L1 和 R2 的减少过度搭配方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;S. Gottlieb;Lijie Ji;Y. Maday;Zhenli Xu
  • 通讯作者:
    Zhenli Xu
A reduced basis warm-start iterative solver for the parameterized linear systems
参数化线性系统的减基热启动迭代求解器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijin Hou;Yanlai Chen;Yinhua Xia
  • 通讯作者:
    Yinhua Xia
A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
降基近似框架下 inf-sup 稳定性常数下界的单调评估
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;J. Hesthaven;Y. Maday;Jerónimo Rodríguez
  • 通讯作者:
    Jerónimo Rodríguez

Yanlai Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlai Chen', 18)}}的其他基金

Implementation of a Contextualized Computing Pedagogy in STEM Core Courses and Its Impact on Undergraduate Student Academic Success, Retention, and Graduation
在 STEM 核心课程中实施情境化计算教学法及其对本科生学业成功、保留和毕业的影响
  • 批准号:
    2030552
  • 财政年份:
    2020
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches
研讨会:不连续伽辽金方法及相关方法的最新进展和挑战
  • 批准号:
    1720825
  • 财政年份:
    2017
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Rigorous Development of an Efficient Reduced Collocation Approach for High-Dimensional Parametric Partial Differential Equations
严格开发高维参数偏微分方程的高效简化配置方法
  • 批准号:
    1719698
  • 财政年份:
    2017
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Developing reduced basis methods for Galerkin and Collocation framework
为 Galerkin 和 Collocation 框架开发简化基方法
  • 批准号:
    1216928
  • 财政年份:
    2012
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
  • 批准号:
    41105102
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
求解Basis Pursuit问题的数值优化方法
  • 批准号:
    11001128
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An Investigation of the Physiological Basis of Curiosity in Young Children and Adults
幼儿和成人好奇心生理基础的调查
  • 批准号:
    ES/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Fellowship
The molecular basis of T cell receptor cross-reactivity between MHC and MR1
MHC 和 MR1 之间 T 细胞受体交叉反应的分子基础
  • 批准号:
    DP240102905
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Discovery Projects
Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
  • 批准号:
    BB/Y000374/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Defining the molecular basis of chloroplast transcription of photosynthetic genes
定义光合基因叶绿体转录的分子基础
  • 批准号:
    BB/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
Trustworthy Distributed Brain-inspired Systems: Theoretical Basis and Hardware Implementation
值得信赖的分布式类脑系统:理论基础和硬件实现
  • 批准号:
    EP/Y03631X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
  • 批准号:
    BB/Y003772/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
  • 批准号:
    BB/Y005473/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
  • 批准号:
    2418125
  • 财政年份:
    2024
  • 资助金额:
    $ 29.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了