Rigorous Development of an Efficient Reduced Collocation Approach for High-Dimensional Parametric Partial Differential Equations

严格开发高维参数偏微分方程的高效简化配置方法

基本信息

  • 批准号:
    1719698
  • 负责人:
  • 金额:
    $ 15.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Many physical phenomena depend on a range of parameters, and to understand the phenomena many repeated simulations for different parameter values are required. Such parameters may describe properties of a material, wave frequencies, uncertainties in measured data, physical states at the boundaries, or domain geometry, among others. These massively repeated simulations require significant computer time, and are frequently computationally prohibitive. Reduced basis methods were developed to resolve this issue by providing efficient and accurate surrogate solutions for the large space of parameter values, based on a relatively small number of carefully selected parameters and their related pre-computed highly accurate "snapshot" solutions. Once these "snapshot" solutions are pre-computed, computing the surrogate solutions for any parameter values is quick and efficient. Moreover, their accuracy is certified by a mathematically rigorous error bound. A variant of the reduced basis method, called the reduced collocation method, was recently introduced by the PIs that is more efficient for nonlinear problems. The goals of this project are to develop this new method to be more efficient, both in precise identification of the "snapshot" solutions and in computing the surrogate solutions once the "snapshot" solutions are found, to integrate reduced basis and reduced collocation methods with uncertainly quantification techniques to efficiently handle complex problems, and to ensure that certain strong stability properties satisfied by the underlying snapshot solutions are preserved by the reduced collocation methods. These goals will enable an efficient and powerful reduced collocation method that can be applied to a wide range of parameter-dependent phenomena. Reduced basis methods were originally developed for use with a Galerkin formulation of a partial differential equations, and recently extended by the PIs for collocation formulations, which are frequently preferred for nonlinear problems. In fact, this new reduced collocation method (RCM) is more efficient than the typical reduced basis method (RBM) for a large class of partial differential equations (PDEs). The goal of this project is to rigorously develop the new RCM in order to: (1) improve the offline stage by introducing novel approaches to building a more optimal reduced space faster; (2) make the online stage of the RCM more robust and efficient for nonlinear problems through a variety of mathematical approaches to selecting the collocation points, developing pre-conditioners, and creating a co-prime multi-grid approach; (3) integrate the RBM/RCM with uncertainty quantification approaches to efficiently handle problems with high dimensional random spaces; and (4) enhance the RBM/RCM approaches to guarantee that the surrogate solutions preserve the strong stability properties satisfied by the underlying snapshot solutions. Rigorous mathematical analysis and innovative and efficient algorithm design will be combined to improve the reduced basis approaches thereby making them more efficient and robust for large classes of problems. This project will transform the RCM to make it efficient and robust, for linear as well as nonlinear problems. Furthermore, this project will combine knowledge from the field of reduced order modeling for linear and nonlinear PDEs and the field of uncertainty quantification to create powerful new methods, hybrids of the generalized polynomial chaos method and reduced basis methods. The resulting algorithms will impact the field of uncertainty quantification by improving the efficiency and robust handling of high parameter dimensions. Finally, the RBM/RCM will be improved to guarantee the preservation of nonlinear properties such as positivity. This novel development will resolve a major concern about the quality of the surrogate solution.
许多物理现象依赖于一系列参数,为了理解这些现象,需要对不同参数值进行多次重复模拟。这些参数可以描述材料的特性、波频率、测量数据的不确定性、边界处的物理状态或域几何等。这些大规模重复的模拟需要大量的计算机时间,并且经常在计算上令人望而却步。为了解决这一问题,开发了约基方法,通过相对少量的精心选择的参数及其相关的预先计算的高精度“快照”解,为大空间的参数值提供高效、准确的替代解。一旦预先计算了这些“快照”解决方案,计算任何参数值的代理解决方案都是快速而有效的。此外,它们的准确性由数学上严格的误差界来证明。pi最近引入了一种简化基法的变体,称为简化配置法,它对非线性问题更有效。该项目的目标是发展这种新方法,使其在精确识别“快照”解和在找到“快照”解后计算替代解方面更有效,将减少基和减少搭配方法与不确定性量化技术相结合,以有效地处理复杂问题。并通过简化的配置方法保证了底层快照解所满足的强稳定性。这些目标将使一个有效和强大的约简搭配方法,可以应用于广泛的参数依赖现象。约基方法最初是为偏微分方程的伽辽金公式而开发的,最近由pi扩展到配置公式,这通常是非线性问题的首选。事实上,对于一类较大的偏微分方程,这种新的约简配置方法比典型的约简基方法更有效。该项目的目标是严格开发新的RCM,以便:(1)通过引入新的方法来更快地构建更优化的缩减空间,从而改善离线阶段;(2)通过多种数学方法选择配点、开发预调节器和创建共素数多网格方法,使RCM在线阶段对非线性问题更加鲁棒和高效;(3)将RBM/RCM与不确定性量化方法相结合,有效处理高维随机空间问题;(4)增强RBM/RCM方法,以保证替代解保持底层快照解所满足的强稳定性。将严谨的数学分析与创新高效的算法设计相结合,改进简化基方法,从而使其在处理大类别问题时更加高效和鲁棒。该项目将改变RCM,使其对线性和非线性问题都有效和健壮。此外,本项目将结合线性和非线性偏微分方程的降阶建模领域和不确定性量化领域的知识,创建强大的新方法,即广义多项式混沌方法和降基方法的混合方法。由此产生的算法将通过提高效率和鲁棒性来处理高参数维度,从而影响不确定度量化领域。最后,对RBM/RCM进行改进,以保证正性等非线性性质的保留。这一新颖的发展将解决关于替代溶液质量的主要问题。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced Basis Methods for Fractional Laplace Equations via Extension
  • DOI:
    10.1137/18m1204802
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Yanlai Chen;A. Narayan
  • 通讯作者:
    Harbir Antil;Yanlai Chen;A. Narayan
Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise
经认证的任意类型噪声驱动的随机微分方程的离线自由降基 (COFRB) 方法
  • DOI:
    10.1007/s10915-019-00976-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Liu, Yong;Chen, Tianheng;Chen, Yanlai;Shu, Chi-Wang
  • 通讯作者:
    Shu, Chi-Wang
Model reduction for fractional elliptic problems using Kato's formula
  • DOI:
    10.3934/mcrf.2021004
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    H. Dinh;Harbir Antil;Yanlai Chen;E. Cherkaev;A. Narayan
  • 通讯作者:
    H. Dinh;Harbir Antil;Yanlai Chen;E. Cherkaev;A. Narayan
A robust error estimator and a residual-free error indicator for reduced basis methods
  • DOI:
    10.1016/j.camwa.2018.11.032
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Jiahua Jiang;A. Narayan
  • 通讯作者:
    Yanlai Chen;Jiahua Jiang;A. Narayan
L1-Based Reduced Over Collocation and Hyper Reduction for Steady State and Time-Dependent Nonlinear Equations
  • DOI:
    10.1007/s10915-021-01416-z
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yanlai Chen;Lijie Ji;A. Narayan;Zhenli Xu
  • 通讯作者:
    Yanlai Chen;Lijie Ji;A. Narayan;Zhenli Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanlai Chen其他文献

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem
基于后验误差估计的改进连续约束方法用于二维麦克斯韦问题的简化基近似
Multiple Solutions of Boundary Value Problems for nth-Order Singular Nonlinear Integrodifferential Equations in Abstract Spaces
抽象空间中n阶奇异非线性积分微分方程边值问题的多重解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;Tingqiu Cao;Baoxia Qin
  • 通讯作者:
    Baoxia Qin
L1-ROC and R2-ROC: L1- and R2-based Reduced Over-Collocation methods for parametrized nonlinear partial differential equations
L1-ROC 和 R2-ROC:参数化非线性偏微分方程的基于 L1 和 R2 的减少过度搭配方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;S. Gottlieb;Lijie Ji;Y. Maday;Zhenli Xu
  • 通讯作者:
    Zhenli Xu
A reduced basis warm-start iterative solver for the parameterized linear systems
参数化线性系统的减基热启动迭代求解器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijin Hou;Yanlai Chen;Yinhua Xia
  • 通讯作者:
    Yinhua Xia
A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
降基近似框架下 inf-sup 稳定性常数下界的单调评估
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanlai Chen;J. Hesthaven;Y. Maday;Jerónimo Rodríguez
  • 通讯作者:
    Jerónimo Rodríguez

Yanlai Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanlai Chen', 18)}}的其他基金

Reduced Basis Enhancements of Neural Networks and Their Application to Quantum Materials Simulation
神经网络的减基增强及其在量子材料模拟中的应用
  • 批准号:
    2208277
  • 财政年份:
    2022
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Implementation of a Contextualized Computing Pedagogy in STEM Core Courses and Its Impact on Undergraduate Student Academic Success, Retention, and Graduation
在 STEM 核心课程中实施情境化计算教学法及其对本科生学业成功、保留和毕业的影响
  • 批准号:
    2030552
  • 财政年份:
    2020
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Workshop: Recent Advances and Challenges in Discontinuous Galerkin Methods and Related Approaches
研讨会:不连续伽辽金方法及相关方法的最新进展和挑战
  • 批准号:
    1720825
  • 财政年份:
    2017
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Developing reduced basis methods for Galerkin and Collocation framework
为 Galerkin 和 Collocation 框架开发简化基方法
  • 批准号:
    1216928
  • 财政年份:
    2012
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
  • 批准号:
    2420924
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
  • 批准号:
    2412341
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
Development of structurally controlled porous metal oxide nanoarchitectures of photoanode for efficient solar-driven water splitting
开发结构控制的多孔金属氧化物纳米结构光电阳极,用于高效太阳能驱动的水分解
  • 批准号:
    24K08579
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant for R&D
ASD3MAP: Amorphous Solid Dispersion Digital Design and Manufacturing Platform for rapid and resource-efficient development of bioavailable medicines
ASD3MAP:非晶固体分散体数字设计和制造平台,用于快速、资源高效地开发生物可利用药物
  • 批准号:
    10078996
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Collaborative R&D
Development of efficient 1,3-polyol synthesis without using protecting groups
开发不使用保护基团的高效 1,3-多元醇合成方法
  • 批准号:
    23K06045
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of photochemical SELEX for efficient screening of DNA aptamers.
开发光化学SELEX以有效筛选DNA适体。
  • 批准号:
    23K06088
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an electrically heated wire catalyst for highly efficient decomposition of ethylene with the aim of keeping the freshness of agricultural products
开发高效分解乙烯的电加热丝催化剂,以保持农产品的新鲜度
  • 批准号:
    23K05465
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of highly efficient CRISPR-Cas13-antimicrobials against MRSA
开发针对 MRSA 的高效 CRISPR-Cas13 抗菌药物
  • 批准号:
    23K15377
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了