RUI: Using computational homology to detect DNA Copy Number Aberrations in Breast Cancer

RUI:利用计算同源性检测乳腺癌中的 DNA 拷贝数畸变

基本信息

  • 批准号:
    1217324
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The analysis of large complex data sets poses a major challenge for computational mathematics. Topological Data Analysis (TDA) applies concepts from algebraic topology to address this challenge. Topological techniques have been used successfully in engineering and biology but are seldom applied to the analysis of genomic data. In cancer genomics, the identification of copy number aberrations (CNAs) such as gains and losses of DNA segments is an important problem because CNAs are known to contain cancer genes and therefore to be involved in misregulation of key signaling pathways. CNAs may occur independently or may co-occur. The latter are believed to act synergistically and therefore result in unforeseen consequences. For example, the finding that CNAs in 8p12 and 11q13.3 are co-amplified in some breast cancers led to the discovery of functional interactions between the MYC and the TP53 pathways. Such interactions offer an important paradigm for cancer research because many tumors are believed to use similar mechanisms for their progression. Identification of co-occurring CNAs has traditionally been hindered both by the large sample sizes required to find co-occurrences and by the lack of mathematical methods to identify them efficiently. Recently, large microarray-based data sets have become available for breast cancer. The proposed research aims to develop a new TDA-based method to detect independent and co-occurring CNAs in breast cancer. In the proposed approach each CNA profile is characterized by a set of biologically-meaningful topological spaces. Topological invariants of these spaces (i.e., Betti numbers) will be used to de-noise the data and identify CNAs. This project will yield broadly-applicable methods for: (1) representing complex data sets in forms that are amenable to topological analysis; (2) determining the statistical significance of TDA results; (3) computing topological invariants from large data sets.Rapid advances in the sciences have generated large, complex data sets of unprecedented proportions. New mathematical methods are urgently needed in order to solve fundamental problems in the analysis of such high-dimensional data. In the field of genomics, thousands of measurements have been obtained with the goal of unveiling molecular signatures that characterize essential biological processes. This field has significantly influenced the direction of breast cancer research because of its potential for differentiating various subtypes, pathways and prognoses of the disease. Currently, the major approach to detecting genomic signatures is focused on the identification of single independent events. However, there is increasing evidence that copy number aberrations (CNAs)-- such as amplifications and deletions of the genome--are not always independent of one another; rather, they may co-occur with synergistic and unforeseen consequences. For example, co-occurring CNAs detected in breast cancer have led to the identification of cross-talk between different signaling pathways. The systematic search for co-occurring CNAs has been hampered by a lack of mathematical methods adequate to identify them. The PI proposes to develop new methods in Topological Data Analysis to identify co-occurring CNAs in breast cancer. Further, because copy number changes are associated with other diseases and with evolutionary processes, this project will have important impacts across the sciences, both basic (e.g. evolution and development) and applied (e.g. diseases with a genetic component such as cancer, autism and multiple sclerosis). The proposed research will advance the field of mathematical genetics/genomics with new tools for analyzing complex interactions among genetic elements in genetic/genomic data. The methods developed also have the potential for extension to identify co-occurring events in large, complex longitudinal data sets. Furthering its broader impacts, the project will implement a series of public lectures on real-life applications of computational mathematics with special outreach to local school teachers, students and professionals.
对大型复杂数据集的分析对计算数学提出了重大挑战。拓扑数据分析(TDA)应用代数拓扑学中的概念来解决这一挑战。拓扑技术已经成功地应用于工程和生物学中,但很少被应用于基因组数据的分析。在癌症基因组学中,DNA片段的得失等拷贝数变异(CNA)的识别是一个重要的问题,因为CNA已知含有癌症基因,因此参与了关键信号通路的错误调控。CNAS可以独立发生,也可以同时发生。后者被认为是协同行动,因此会导致不可预见的后果。例如,在一些乳腺癌中,8p12和11q13.3中的CNA被共扩增,这一发现导致了MYC和TP53通路之间功能相互作用的发现。这种相互作用为癌症研究提供了一个重要的范例,因为许多肿瘤被认为在其进展过程中使用类似的机制。传统上,由于寻找共生化合物所需的大样本量,以及缺乏有效识别它们的数学方法,共生CNA的识别一直受到阻碍。最近,基于微阵列的大型数据集已经可以用于乳腺癌。这项拟议的研究旨在开发一种新的基于TDA的方法来检测乳腺癌中独立和共生的CNA。在所提出的方法中,每个CNA轮廓由一组具有生物意义的拓扑空间来表征。这些空间的拓扑不变量(即Betti数)将被用于数据去噪和识别CNA。这个项目将产生广泛适用的方法:(1)以适合于拓扑分析的形式表示复杂的数据集;(2)确定TDA结果的统计意义;(3)从大数据集中计算拓扑不变量。科学的快速发展产生了前所未有的大型复杂数据集。迫切需要新的数学方法来解决这些高维数据分析中的基本问题。在基因组学领域,已经获得了数以千计的测量结果,目的是揭示表征基本生物学过程的分子签名。这一领域显著影响了乳腺癌的研究方向,因为它具有区分疾病的不同亚型、途径和预后的潜力。目前,检测基因组特征的主要方法是识别单个独立事件。然而,越来越多的证据表明,拷贝数偏差(CNA)--例如基因组的扩增和缺失--并不总是彼此独立的;相反,它们可能会同时发生,并产生协同和不可预见的后果。例如,在乳腺癌中检测到的共生CNA导致了不同信号通路之间的串扰的识别。由于缺乏足够的数学方法来识别共生的CNA,系统地寻找共生CNA的工作一直受到阻碍。PI建议在拓扑数据分析中开发新的方法来识别乳腺癌中共存的CNA。此外,由于拷贝数变化与其他疾病和进化过程有关,该项目将对基础科学(如进化和发育)和应用科学(如带有遗传成分的疾病,如癌症、自闭症和多发性硬化症)产生重要影响。拟议的研究将推动数学遗传学/基因组学领域的发展,为分析遗传/基因组数据中遗传要素之间的复杂相互作用提供新的工具。开发的方法还有可能扩展到在大型、复杂的纵向数据集中识别共同发生的事件。为了进一步扩大其影响,该项目将举办一系列关于计算数学在现实生活中的应用的公开讲座,特别是面向当地学校的教师、学生和专业人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ellis其他文献

A stability result for balanced dictatorships in Sn
Sn 平衡独裁政权的稳定性结果
  • DOI:
    10.1002/rsa.20515
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Ellis;Yuval Filmus;E. Friedgut
  • 通讯作者:
    E. Friedgut
Phase II study of autologous stem cell transplant using busulfan–melphalan chemotherapy-only conditioning followed by interferon for relapsed poor prognosis follicular non-Hodgkin lymphoma
自体干细胞移植的 II 期研究,使用白消安-美法仑化疗预处理,然后使用干扰素治疗复发性不良预后滤泡性非霍奇金淋巴瘤
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    A. Grigg;J. Stone;A. Milner;A. Schwarer;M. Wolf;H. Prince;J. Seymour;D. Gill;David Ellis;J. Bashford
  • 通讯作者:
    J. Bashford
Environmental isolation of Cryptococcus neoformans gattii from California.
来自加利福尼亚州的新型隐球菌 gattii 的环境隔离。
Setwise intersecting families of permutations
  • DOI:
    10.1016/j.jcta.2011.12.003
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Ellis
  • 通讯作者:
    David Ellis
On the structure of random graphs with constant $r$-balls
具有常数$r$球的随机图的结构

David Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ellis', 18)}}的其他基金

Analysing group testing algorithms for COVID-19 surveillance and case identification in UK schools, universities, and health and social care settings
分析英国学校、大学以及卫生和社会护理机构中用于 COVID-19 监测和病例识别的群体测试算法
  • 批准号:
    EP/W000032/1
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
A Conference Grant -- Enhancing the Public Understanding of Research -- January 28-30, 2001, Boston.
会议资助——增强公众对研究的理解——2001 年 1 月 28 日至 30 日,波士顿。
  • 批准号:
    0091749
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Research Experiences for Undergraduates in Physics and Astronomy
物理学和天文学本科生的研究经历
  • 批准号:
    9731880
  • 财政年份:
    1998
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Research Experiences for Undergraduates in Physics and Astronomy at the University of Toledo
托莱多大学物理和天文学本科生的研究经历
  • 批准号:
    9500433
  • 财政年份:
    1995
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Laboratory Enhancement for Applied Mathematics
应用数学实验室增强
  • 批准号:
    9251673
  • 财政年份:
    1992
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
  • 批准号:
    2330737
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
  • 批准号:
    23KJ0919
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Empowering Augmented Mobility Of The Aging Population Using Computational Musculoskeletal Simulation
使用计算肌肉骨骼模拟增强老龄化人口的活动能力
  • 批准号:
    ES/Y008030/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
  • 批准号:
    10759887
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Characterizing Decision-Making in Anorexia Nervosa Under Conditions of Risk and Ambiguity using Computational Neuroimaging
使用计算神经影像描述神经性厌食症在风险和模糊性条件下的决策特征
  • 批准号:
    10580198
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Using Single Cell Biological Approaches to Understand CNS TB
使用单细胞生物学方法了解中枢神经系统结核
  • 批准号:
    10739081
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
  • 批准号:
    491213
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了